
Master Thesis - Applied Computer Science
Albert-Ludwigs-Universität Freiburg im Breisgau

Development of the Security
Framework based on OWASP ESAPI

for JSF2.0

Rakeshkumar Kachhadiya

2 May 2012

Albert-Ludwigs-Universität Freiburg im Breisgau
Faculty of Engineering

Department of Computer Science and Social Studies
Supervisor Prof. Dr. Günter Müller,

Prof. Dr. Emmanuel Benoist

Supervisor
Prof. Dr. Günter Müller,
Prof. Dr. Emmanuel Benoist

Primary Reviewer
Prof. Dr. Günter Müller

Secondary Reviewer
Prof. Dr. Gerhard Schneider

Date
2 May 2012

Declaration

I hereby declare that I have written the Master’s Thesis on my own, and used no
other than the stated sources and aids. I have duly acknowledged all words, phrases
or passages taken from other publications. Furthermore, I declare that neither this
thesis nor a similar version have been submitted to any other institution for a degree
or for publication.

Freiburg, 2 May 2012
Rakeshkumar Kachhadiya

3

Contents

Abstract 1

Zusammenfassung 3

1 Introduction 5
1.1 Motivation . 6
1.2 Problem Definition . 7
1.3 Organization of This Thesis . 8

2 State of the Art Review 9
2.1 The Notion of the Web Security . 9

2.1.1 Web Application Definition 10
2.2 HTML . 11
2.3 HTTP . 11
2.4 Javascript . 12
2.5 What is OWASP? . 13

2.5.1 What is OWASP Top Ten ? 14
2.5.2 XSS . 14
2.5.3 Preventing XSS in the Development Phase 18
2.5.4 CSRF . 19
2.5.5 CSRF Detection and Prevention 21
2.5.6 Insecure Direct Object References 22
2.5.7 Insecure Direct Object References Prevention 24
2.5.8 Broken Authentication and Session Management 24
2.5.9 Failure to Restrict URL Access 26
2.5.10 Failure to Restrict URL Access Protection 27
2.5.11 Injection . 27
2.5.12 Injection Prevention . 28

3 Java Server Faces 29
3.1 History . 29
3.2 Model-View-Controller Pattern . 30
3.3 About Java Server Faces . 32
3.4 Java Server Faces Architecture . 33
3.5 JSF Web Application . 34
3.6 JSF Request Processing Lifecycle . 34

i

Contents

3.7 Guidance For Developing JSF Web Application 36
3.7.1 Mapping the FacesServlet Instance To the Web.xml File . . . 37
3.7.2 Creation of .xhtml Web Pages 37
3.7.3 Defining the Page Flow . 39
3.7.4 Development of the Java Beans 40
3.7.5 Adding Managed Bean Declarations 41

3.8 The Advantages of the JSF Application 42

4 ESAPI 43
4.1 Architecture . 43
4.2 How does ESAPI Work? . 46

4.2.1 ESAPI in Presentation Layer of JSF Based Web Application . 47
4.2.2 ESAPI in Business Layer of JSF Based Web Application . . . 48

4.3 Invalidate User Input . 50
4.4 Performance versus Security . 50
4.5 Improvement . 51

5 Description of Our Approach 52
5.1 Why Security Framework? . 52
5.2 Architecture of the Security Framework 52

5.2.1 Validation Module . 53
5.2.2 Filtering Module . 54
5.2.3 File Based Authorization . 55
5.2.4 Render Response . 55

5.3 Configuration of Security Framework in JSF Based Application. . . . 57
5.3.1 Components of Validation Module 57
5.3.2 Configuration Steps of the Validation Module. 58
5.3.3 Components of Filtering Module 63
5.3.4 Configuration Steps of the Filtering Module. 64
5.3.5 Components of Authorization Module 67
5.3.6 Configuration Steps of the Authorization Module. 68
5.3.7 Components of the Render Response Module 71
5.3.8 Configuration Steps of the Render Response Module. 73

6 Further Work 76

7 Summary and Conclusions 78

Bibliography 80

ii

Abstract

Web applications have become very popular nowadays; they are used in various
safety critical environments, such as the banking systems, the military sector, fi-
nance, etc. The developers use different web application frameworks to develop
these safety critical applications. The frameworks help them to alleviate the over-
head associated with common activities used in the web development, such as session
management, pages redirection, etc. However, the most important aspect is to pro-
vide security to the safety critical application. Therefore, the developers use the
existing available security features from the framework, but it is not always enough.
In the course of this work, a newly developed security framework will be introduced.
This thesis concentrates on the development of a new security framework based on
the most popular web based application framework JSF (Java Server Faces). The
main task is to bring the security features of the OWASP ESAPI (Enterprise
Security API) into the framework, which makes all the different components of
the JSF life cycle more secure.
We focus mainly on some of the security risks listed by OWASP top ten, such as
Cross-site scripting, Cross-site request forgery, Authorization, as well as client side
Validation. The new security framework helps to make the applications more secure
against these risks, and therefore, contains four modules.
The first module is called Validation and contains various JSF-friendly validation
tags ported from ESAPI. They filter the vulnerable cross-site scripting code from
the user input and also provide other user-friendly validations.
The second module called Filtering adds the randomly generated token in each
form and on subsequent requests it compares the random token of the form with the
token stored in the session for that user. If they are not the same, then it generates
the appropriate error message. This helps to prevent the cross-site request forgery
attack.
The third module called Authorization, brings some user-friendly tags which sep-
arates the presentation layer based on the user roles. For example, the user with
admin role can see all the content on the page, but the normal user can not visualize
them. This module provides the role based on the access to the authorized user.
The last module is the Render Response module which encodes the cross-site
scripting vulnerable code from the output, before sending it to the client as given in
the cheat sheet of the OWASP. In overall, these four modules focus on the different
aspects of security, in order to improve the JSF framework security.

1

Furthermore, the integration of the framework is described at the end of the paper.
In this study, the important security features have come up into the single umbrella
of the newly developed framework.

2

Zusammenfassung

Zur heutigen Zeit sind Web-Applikationen sehr weitverbreitet. Sie werden durch
sicherheitsbedingten Funktionen in verschiedenen Bereichen angewandt, wie bei-
spielsweise im Bank-, Finanz-, Militärsektor etc. Die Entwickler solcher Web ap-
plikationen arbeiten an verschiedenen Grundstrukturen, die dazu dienen Sektoren
einfacher mit den allgemeinen Tätigkeiten zu verbinden. Die für die Web appli-
kation nötigen Grundstrukturen, werden in der Netzentwicklung, wie dem Session
Management oder der Neuausrichtung der Internetseite verwendet. Dadurch ist der
wichtigste Aspekt Schutz für die sicherheitsbedingten Funktionen zur Verfügung zu
stellen. Dafür verwenden die Programmierer bereits bestehende Sicherheitsfeatures
aus den Grundstrukturen, die jedoch nicht ausreichen. Im Verlauf dieser Arbeit wird
demnach eine neuentwickelte Schutzfunktion vorgestellt.

Diese Arbeit beschäftigt sich hauptsächlich mit der Entwicklung der neuen Schutz-
funktion, die auf der weit verbreiteten Grundstruktur der JSF (Java Server Faces)
gründet. Die Hauptaufgabe besteht darin, die Sicherheitsmerkmale des OWASP
ESAPI (Enterprise Security API) in die neu entwickelte Struktur miteinzube-
ziehen und dadurch alle Bestandteile des JSF Lebenszyklus besser zu schützen.

Hauptsächlich werden einige Sicherheitsrisiken, die durch die OWASP top ten auf-
gelistet wurden, behandelt. Beispiele hierfür wären: cross-site scripting, cross-site
request forgery, Zulassungen sowie der Ermittlung der Validierung auf der Benut-
zerseite. Die neue Schutzfunktion folgt vier Modulen, um die Applikationen zu si-
chern und vor Risiken zu schützen. Das erste Modul Validation beinhaltet die
JSF-freundlichen Validierungsbezeichnungen der ESAPI. Sie machen den angreif-
baren cross- site scripting code des Benutzereingangs ausfindig und liefern andere
benutzerfreundliche Validierungen. Das zweite Modul, Filtering, und wird der An-
forderung durch das gelegentlich erzeugte Zeichen in jeder Form gerecht. Es ver-
gleicht das Zeichen der Form mit dem in der Sitzung des Benutzers gespeicherten
Zeichen. Sind sie nicht gleich, erzeugt es die passende Fehlermeldung. Dieses hindert
den Angriff eines cross-site request forgery. Das dritte Modul, Authorization, holt
Genehmigungen ein, die die Darstellungsschicht von der Basis trennen. So erhält
der Benutzer die Admin-Rolle. Auf dieser Weise kann der gesamte Inhalt der Seite
gesehen werden, die normale Anwender nicht sehen können. Dieses Modul bietet
die Möglichkeit eines neuen Zugangs fÃŒr befugte Benutzer an. Das letzte Modul,
Render Response, verschlüsselt das cross-site scripting. Diese verschlüs-selte Ant-
wort wird an den Benutzer zurückgeschickt, wie das cheat sheet der OWASP. Alles
in allem bilden diese vier Module den Schutz um die JSF- Grundstruktur Sicherheit

3

zu verbessern.
Am Ende der Arbeit wird die Einbindung der Schutzfunktion beschrieben. Dadurch
werden die wichtigen Sicherheitsmerkmale in einer einzelnen neuentwickelten Grund-
struktur aufgenommen.

4

1 Introduction

The popularity of web applications has increased immensely lately, mainly because
of its client-server architecture and its accessibility from all over the world on any
platform. They are used in various safety critical-environments such as the military,
financial, medical sector, etc. As their use in the critical-environment increases, the
sophisticated attacks against these applications also have increased and securing
applications against these attacks have become very important. A web application
can provide a high level of security at the server’s side. However, providing security
at the client’s side is sometimes brainstorming because the server does not recog-
nize whether the request comes from a trustworthy client or not. Therefore, web
applications need to be secure on both the sides and they should be able to verify
the user input properly. Application security, though, does not only verify the form
input, but it also covers the configuration files, session management, giving access
rights to the application resources, etc. In general, an application needs to be secure
from all the aspects.

Nowadays, developers use various available frameworks for building applications
easily, in order to meet current project deadlines, as well as they uses the security
features provided by the framework. Sometimes the developer gives a least priority
to the application security features and thinks that they will integrate the security
feature at the end of the application development life cycle. Still, it becomes very
complex, and that’s why security should always be given first priority in the software
development life cycle. Usually, the developer uses the existing available security
features from the framework, but they are not always enough. Therefore, a security
framework should be available which can integrate anywhere in the software devel-
opment life cycle without writing many lines of programming code. It should also
provide security features without affecting the actual separation of layer.

This thesis presents one of the most popular MVC based software development
framework called JSF (Java Server Faces). The JSF framework makes the de-
velopment the web applications easier and is a component-based framework, mixing
good features of Apache Struts (popular web based framework) and Java Swing
components (for standalone application). There are different versions of JSF avail-
able such as JSF1.*, but the main purpose of this project is to develop a security
framework for the latest version JSF2.0, which improves the existing security fea-
tures on it. For the realization of this project the OWASP ESAPI (Enterprise
Security API), is also used because they make it easier for programmers to write
low-risk applications or retrofitting security into existing applications [NWS11].

5

Chapter 1 Introduction

1.1 Motivation

As the usage of Internet is growing, the requirements of developing the web appli-
cations become more professional and dynamic [Vog06], which makes them to be
used as global environment for representing all kinds of applications. One reason
for the popularity of web applications is its accessibility from all over the world on
any platform. Furthermore, the maintenance of the Web applications takes place
centrally at minimum costs [Obe07]. In order to develop high quality dynamic web
applications, the developer uses various Web based application frameworks. It helps
to alleviate the overhead associated with common activities used in the web de-
velopment [RK07]. For example, the way, how the data is stored in the database,
many frameworks provide libraries for database access, templating frameworks, ses-
sion management and how a page is generated, etc. It reduces the burden in the
software development life cycle. Still, the most important aspect that needs to be
considered is, how to provide security to all these applications.

We provide importance of security features in the web based application framework
by the following statements:

Consideration of security in the System Development Life Cycle is essential to im-
plementing and integrating a comprehensive strategy for managing risk for all infor-
mation technology assets in an organization [RK07].

The integration of security in the software development life cycle of web applica-
tion, however, still requires a developer to possess a deep understanding of security
vulnerabilities and attacks [BMW+11].

Web application security must be addressed across the tiers and at multiple layers.
A weakness in any tier or layer makes your application vulnerable to attack [MC03].

As described in the statement [RK07], it is very important to consider security
features in the software development life cycle. Otherwise vulnerabilities in the
application could impact all the information technology assets in an organization.

The security features provided by the framework are not always enough to make
the application secure from all the aspects. Hence, the developer uses various third
party libraries, which are sometimes difficult to learn and configure. So, it requires a
framework which introduces all the security features under the same umbrella with
minimal configuration.

To prove our approach, we have introduced a new security framework based on
JSF2.0 (Java Server Faces). It helps the developer to improve the existing security
features as well as providing new features.

6

1.2 Problem Definition

1.2 Problem Definition

The main purpose of this project lies in the development of security framework
based on OWASP ESAPI for JSF2.0. The ESAPI (Enterprise Security API) is an
open source, security control library that brings good features of different libraries
together. It helps the developer to write programming code, instead of writing
security code for the application. The ESAPI libraries are also designed to make
it easier for a programmer to retrofit security into existing applications and serves
as a solid foundation for new development [SP]. The main purpose of using ESAPI
in the development of the security framework is that it provides customization for
different platforms and can be used in any part of the software development life
cycle.
The security framework takes input from the JSF framework, processes it with
ESAPI and returns the results to the JSF framework. It also takes care of the
security for almost all the phases of the JSF life cycle. The developer does not need
extensive prior knowledge of the web security to use this framework in their software
development but requires to do little configuration. This entire framework is divided
into four different modules. Each module deals with different areas of security, and
it works as middleware between JSF based application and ESAPI.
The Validation is the first module which verifies the user input as given in the
Cross-site scripting (XSS) prevention cheat sheet from OWASP. It consists of many
user defined validator tags and generates appropriate error messages on invalid user
inputs. We have also ported ESAPI Java Validator in a JSF-friendly new library
which can easily be integrated into a page. We provide a new set of JSF tags and
some of these tags perform filtering of XSS enabled code from the input.
The File Based Authorization module simplifies the user’s role and it gives per-
mission to visualize certain areas in the presentation layer according to the user
rights.
In the Filtering layer, a new random token is added for each form during each
http response. The layer validates the form token with the token stored in the
session in each http request. If the token is changed or missing, the application
will generate the appropriate exception. This is particularly a protection against
Cross-site request forgery (CSRF), since another page would not know the value of
this token.
The last module is Render Response module which renders output after filtering
XSS content and encodes the vulnerable characters such as <,>,”,’ etc. as given in
the XSS prevention cheat sheet of OWASP.
At present our framework covers four important modules for prevent-
ing various security vulnerabilities such as cross-site scripting, cross-site
request forgery, Filed Based Authorization, and Automatic output vali-
dation with escape equal to “true” or “false” with this parameter, since
all the vulnerabilities are listed in OWASP top ten.

7

Chapter 1 Introduction

1.3 Organization of This Thesis

This chapter gives an overview of the sections in this report and their contents.
• Chapter 2 - State of the Art Review

This chapter describes the various security vulnerabilities in the web applica-
tion. The beginning of the section covers about HTTP (hypertext transfer
protocol), HTML (hypertext markup language) and Javascript. Then
the important vulnerabilities of the OWASP top ten are specified in detail
with an example, about cross-site scripting, cross-site request forgery, session
management, failure to restrict URL, etc. The State of the Art Review section
ends with an overview of the common security vulnerabilities that affect the
web application and specifies various measures to counteract them.

• Chapter 3 - JSF2.0
The JSF2.0 (Java Server Faces) chapter gives a short history and an
overview of the JSF2.0 framework with the request processing life cycle in
detail. We specify configuration steps of building simple JSF2.0 based web
application with an example.

• Chapter 4 - ESAPI
This Chapter explains OWASP ESAPI (Enterprise Security API) in
general with architectural information. Moreover, it also provides various ex-
ample of a secure and an insecure demo programs.

• Chapter 5 - Description of Our Approach
This Chapter-5 shows the integration of newly developed security frame-
work with JSF2.0. It also gives architectural information of the security
framework and the detailed information on all the modules is covered later.
Afterwards, the step by step configuration information is given in order to use
this framework with JSF2.0 application.

• Chapter 6 - Further Work
Chapter 6 qualifies how our approach can be extended and improved by the
further work.

• Chapter 7 - Summary and Conclusions
The Summary and Conclusion section summarizes all the important aspects
that compound this study, and it provides the conclusions of the paper.

8

2 State of the Art Review

Web applications have gained tremendous popularity in the past two decades, and
nowadays they are used in safety-critical environments such as military sector, bank-
ing systems, e-commerce, and financial services, etc., where data is extremely valu-
able. In short, they are used in important sector, where valuable information is at
stake. At the same time the number and sophistication of attacks against these
applications have increased. Traditional methods, such as firewalls, are no longer
providing enough security defenses for web applications.

The beginning of this chapter focuses on the web application HTML (HyperText
Markup Language), HTTP (HyperText Transfer Protocol) and scripting
language, like Javascript. Then we move towards the top vulnerabilities listed
by OWASP, which we deem relevant and useful for specific types of web security
problems that will be discussed in this thesis. Moreover, our focus will be on im-
provement of the security of the web based application development framework ‘Java
Server faces.’ We will not dive into cryptography, electronic commerce, or intrusion
detection because it is not web specific.

The general setting for the following deliberations is the client-server architecture.
The computer running software is called ‘client’ and interacts with another software
known as ‘server.’ The client is always a browser such as Mozilla Firefox, Internet
Explorer, or Google Chrome. Browsers interact with servers by passing a set of
instructions as ‘input’. Sometimes, these inputs are not properly validated, either
from the client or the server machine. This allows an attacker to embed a malicious
script with generated response page executed by the client, which sometimes leads
to session hijacking, XSS attack, etc. In the remaining part of the chapter, we
will discuss common attack scenarios in detail and also provide various solutions to
prevent them.

2.1 The Notion of the Web Security

A simple definition of computer security is, “A computer is secure if you can depend
on it and its software to behave as you expect” [GSS03]. Unlike computer security in
general, web security is based on a set of procedures, practices, and technologies for
protecting web servers, web users, and their surrounding organizations. Recently,
web security has been given special attention over computer and Internet security.

9

Chapter 2 State of the Art Review

People use websites to obtain stock quotes, receive tax information, make an ap-
pointment with a hairdresser, search for an old friend, etc. Therefore, it is important
to understand what web application is, and how it works over the Internet.

2.1.1 Web Application Definition

A web application is an application that is accessed over a network, such as the
Internet or an Intranet using a web browser as a client. The browser sends a request
for a particular HTML page and uses a set of instructions that is called ‘protocol’.
This protocol is used to transfer data accurately from the browser and to receive
the response from the server. There are many protocols available such as HTTP
(see section 2.3), FTP, Telnet, IMAP , POP, SMTP and the Internet brings all the
protocols under one umbrella.

Figure 2.1: Client-Server Architecture of a simple HTML Page

A web server publishes information to millions of users via the Internet. It is some-
times possible that computer hackers, criminals, vandals, and other similar groups
are able to break into computers upon which the web servers are running. However,
this kind of risk does not exist in other ways of publishing information like news-
papers, magazines, voice-response, and faxback [GS02]. Companies are concerned
about losing their customers, if they do not provide their information or electronics
shopping to them over the Internet [RGR97]. Still, they do not realize that the
security issues have evolved. New options are added to the website in order to sat-
isfy the growing demands for new features. Nonetheless, as general purpose scripts
(portable programs) are added on both the client and server sides, vulnerability and
the potential for malicious abuse increases.

10

2.2 HTML

2.2 HTML

HTML (HyperText Markup Language) is a markup language. This means that it
contains a set of tags or elements that are basic building blocks for creating web
pages. These tags always come in pairs like <h1> and </h1>; nonetheless, some
tags are called ‘empty elements’, and they are unpaired. For example, tag
does not require another closing tag . The first tag in the pair is called
the ‘start tag’, and the second tag of the pair is called the ‘end tag.’ In between
these tags, the developer writes text, tags, comments or some scripting language.
There are several tags available for creating images, links, forms, tables, paragraphs,
and the option of adding video and audio features. HTML documents are nothing
but plain text files with seven bit ASCII characters which the browser can read and
interpret them on the web page. The HTML page does not display the same tags
but uses them to interpret the content of web pages and display them.

Listing 2.1: HTML Page
<!DOCTYPE >
<html>

<head>
< t i t l e>Hello HTML</ t i t l e>

</head>
. .

<body>
<p>Hello World !</p>

</body>
</html>

Consider the above .html code, it forms a tree structure and all the tags are usually
paired to show the start and the end of tag. The <html> </html> tags are root
tags of any HTML page [Spe05] and the programmer or developer writes other tags
according to their requirements. This page will output ‘Hello World!’ over the
client. However, it is not like other programming languages such as Java, PHP or
.Net for creating dynamic web pages which would change the content automatically.

2.3 HTTP

HTTP (Hypertext Transfer Protocol) is an omnipresent protocol for connections
between servers and browsers. This protocol is mostly used to transfer HTML
documents, although it is designed to be extensible to almost any other document
format like XML [Pla04]. More information about HTTP1.1 can be found in the
documentation of RFC 2068. It functions over TCP (Transmission control protocol),
using port 80 or 8080, despite the fact that other ports could be used. After a
successful connection with server, the client sends request messages to the server,
which responds back either in the form of status message HTML response [Spe05],
or in other formats.

11

Chapter 2 State of the Art Review

The Simple HTTP request message is sent inGET forms, which the server responds
to by sending documents. If a document exists in the server’s space, the server may
send an HTML-encoded message stating the status line; numeric code, such as (404);
and the textual reason phrase, such as “not found”. This form of communication
corresponds to a typical request-response mechanism. A client requests specific
documents from the server and waits for a response. It is up to the server, whether
to respond on time or to send the same request for documents again. This loosely
coupled communication is famous in the client-server architecture.
In addition to theGET request method, HTTP uses eight other additional methods.
Amongst these methods, the POST method is the most important one. It transmits
the form block of data to the server. Unlike the GET method, it is more secure,
transfers more data in a packet, and has no packet size restrictions. This is created
as the match of client request and server response continues. The HTTP does not
maintain the session because it is a stateless protocol [Spe05]. In this way, the
HTTP protocol is used to transmit parameters to, or receive documents from, both
the client’s and server’s side.

2.4 Javascript

Javascript is a prototype based scripting language used to make web pages more
interactive. This means that it follows the style of object-oriented programming
where classes are not present and behavior is performed via making exactly the same
copy of the existing object that serves as a prototype. Syntactically, it appears like C,
C++, or Java. For example, the syntax of a while operation, if statements or some
logical operation (&&) are quite similar. Moreover, it also has some inspiration from
Perl in a number of areas, such as its regular expression and array handling features.
Nevertheless, they all have different semantics. Javascript is loosely typed; it does
not have specific types of variables. For example, variable x is initially bounded to
an integer value and the later part of a program is bounded with string values. The
core Javascript also supports boolean, strings, and numbers as primitive data types.
In addition, it also gives inbuilt support for array, date, and regular expression
objects.
The most common usage of Javascript is to write functions that are embedded into
HTML pages and that interact with the Documents Object Models (DOM) of the
page. Moreover, the developer can also use built in functions from the Javascript
library for rapid development.

Listing 2.2: Javascript Code
<!DOCTYPE >
<html>

<head>< t i t l e>simple page</ t i t l e></head>
<body>

12

2.5 What is OWASP?

<h1 id=" header ">This is JavaScript</h1>
<s c r i p t type=" text / j a v a s c r i p t ">

document . write (' Hello World ! ') ;
alert (" ' He l l o World ! ") ;
// holds a reference to the <h1> tag
var h1 = document . getElementById (" header ") ;
// accessing the same <h1> element
h1 = document . getElementByTagName (" h1 ") [0] ;

</ s c r i p t>
<n o s c r i p t>
Your browser either does not support Javascript , or has Javascript ←↩

turned off .
</ n o s c r i p t>

</body>
</html>

All the Javascript functions are defined inside the <script></script> tag of
HTML file, as shown in the above example with “text/Javascript” value of type
attribute. The program is executed by the client with following output “Your
browser either does not support Javascript, or has Javascript turned off”.
The h1 variable refers to the page header. Javascript always runs on the client’s
side, but not on the server’s side.
The simple use of Javascript is to open or pop up a new window with programmatic
control of over size, position, and attributes of the new window, as shown in the
above example. It needs to validate the input of form, in order to make sure that
it is accepted by the server before submitting it. Javascript is also used to perform
several page events, such as mouse over, click button, etc., and to transmit informa-
tion about user’s surfing details and browsing activities to other websites. Objects
in Javascript map property names to arbitrary property values [Fla06]. Thus, de-
velopers are now using Javascript to script HTTP, manipulate XML data and even
draw dynamic graphics in web browsers. The rapid growth of Internet resulted in a
high number of users and websites, which generat dynamic contents by using vari-
ous scripting programs. This increase resulted in a harmful impact on the security
vulnerabilities in such applications [WLG11]. Some of the security vulnerabilities
that these cross-site scripting execute are at the client’s side with the combination of
Javascript and HTML tag, that we will describe in detail as part of OWASP(Open
Web Application Security Project) top ten.

2.5 What is OWASP?

OWASP (Open Web Application Security Project) is an open source application
security project. The OWASP community consists of educational institutes, compa-
nies, and individuals from all over the world. The main goal of this organization is
to focus on software application security by keeping it visible for users, individuals
or organizations, so that they can make decisions about what kind of security risks
can be found in an application [Com12a]. OWASP’s most successful documents
include OWASP top ten and OWASP Code Review Project.

13

Chapter 2 State of the Art Review

The Attacker follows the many paths in the application in order to harm the orga-
nization or business. Each of these paths is shown in Figure 2.2, represented as a
risk that may or may not be serious from the organization’s point of view.

Figure 2.2: Different paths in the application

2.5.1 What is OWASP Top Ten ?

The goal of OWASP top ten is to raise awareness about application security by
identifying some of the most critical risks faced by organizations. The top ten list
includes vulnerabilities such as Cross-site scripting (XSS), Cross-site request
forgery (CSRF), and many more [Com12b]. The list is periodically updated by the
OWASP team as the threat landscape for Internet applications constantly changes.
It might happen that the application behaves in terms of given input and produced
output. But for some scenario it could be vulnerable to something nobody has ever
considered. OWASP top ten provides the basic techniques to protect applications
against these threats. It also provides guidance for actions after finding a security
breach.

2.5.2 XSS

Cross-site scripting is one of the most common vulnerability listed by OWASP top
ten. “XSS is a class of vulnerability which allows injection of code into the client’s
side of a web application” [Bod]. Code injection in the web application happens as
part of an invalidated input sent from unreliable sources. A web application that
processes the input without validating it, is potentially exposed to dangerous code
injection. The code injected by one client is introduced into the output of another
client whosoever visits this web application could be susceptible to an attack.

14

2.5 What is OWASP?

If the injected code is a scripting code, such as JavaScript [Spe05] or other scripting
language, then it is called ‘Cross-site scripting’. It can impact any website that
allow users to enter data, if the data is not properly validated. The three methods of
injecting codes are, sending malicious content back to the client (Reflected XSS),
storing it in advance (Stored XSS), [Vog06]and modifying the DOM environment
of the client browser (DOM based XSS).

The sequence chart of a reflected attack is shown in Figure 2.3. It is assumed that the
attacker first authenticates himself on the vulnerable web application (i.e. logs into
the web application). Then the attacker sends a message with a link to the victim
through an email or writes a link directly to the vulnerable web application that is
viewed by other group users. When the user clicks on the link, the vulnerable web
application sends the HTML web page that contains the malicious script[Vog06].

Figure 2.3: Steps of Cross-site scripting attack with reflection

The browser then executes the incoming vulnerable script within the HTML page,
and the cookie information is transferred to the site of the attacker. Now the attacker
uses the session cookie information of the victim to the vulnerable web application

15

Chapter 2 State of the Art Review

to authenticate himself in order to gain control over the victim’s account.
The Stored XSS is the most devastating attack, in which the attacker persistently
stores malicious code in the resource managed by the web application, such as
database or file system. The attacker waits for the victim to visit this malicious web
page or link [WLG11]. To perform a “Stored XSS attack”, the HTML code can
be embedded into a message that is posted on the web application. The steps for a
successful attack are shown in Figure 2.4.

Figure 2.4: Steps of Cross-site scripting attack with Stored message

An attacker first stores a cross-site scripting code with message on the vulnerable
web application. Now, a victim authenticates himself by providing some important
information. The client browser stores the session cookie that is received from the
server. The victim gets a request from the attacker to read some important infor-
mation and to follow them. The victim’s browser executes the attacker’s message,
sends the cookies’ information to the attacker, and redirects the page back to the
browser without the awareness of the victim. With the help of the session cookie, the
attacker pretends to be a valid user of the web application and manipulates some of

16

2.5 What is OWASP?

the important information or gains all the privileges of the victim’s account[Vog06].
A DOM-based XSS is another type of Cross-site scripting attack. It is also called
local XSS. A DOM or Document object model is a way scripts can access the struc-
ture of the page, which is placed in the web page and used to manipulate its content.
This attack does not rely on the data transfer between the client and the server,
but it targets the vulnerability inside the source of the web page [WLG11]. The
possible source of the user’s inputs which can contain attack vectors are ‘docu-
ment.referer’, ‘window.name’, and ‘document.location’ property’ [Bod].

Figure 2.5: Steps of Cross-site scripting attack with DOM

Figure 2.5 shows the sequence diagram of DOM based XSS attacks. A victim first
requests the index.html page that contains some vulnerable scripts, but it is assumed
that this time the server simply sends a response back to the victim. Then the
attacker tricks the victim into clicking on the link that contains the vulnerable
script with the URL. The page sent by the server does not change, but the victim’s
browser executes this page differently due to the malicious modifications that have
occured in the DOM environment.
These vulnerabilities are also seen in the search engine websites that reflect the user
search key [Spe05], the server discloses important information in the error messages,

17

Chapter 2 State of the Art Review

filling an electronic form that is used later as well as in online blogs, and forums
which allow users to post their own messages. A successful XSS attacks not only
steals cookies, but also manipulates valuable information, extracts sensitive data
(username, password or credit card number), bypasses an access control, or creates
a request that can be tricked to the other valid users [Bod].

2.5.3 Preventing XSS in the Development Phase

The input validation is a preferred approach for handling the entrusted data. Still,
the input validation is not the best or most complete solution to mitigate the XSS
attack. All the special characters first need to be verified and encoded before placing
them into the output. Otherwise, security mechanisms can bypass the injected code
inside the documents that were later stored in the web application. For example,
the telephone number should always be shown as a number. Therefore, no letters
or special characters are used. When letters are encountered, an error message
should be displayed or the numbers should be filtered out before storing them in the
application. However, filtering out only numbers or some character may not prevent
the cross-site scripting attempt, because it is very difficult to identify and remove all
the special characters and the combination of special characters. For instance, the
character “<” from the input data should be transformed into the character “<”.
Nevertheless, if the generated page uses the encoding type ISO-8859-1, then it can
encode in ‘<’. Encoding every untrusted input data that is used in an output
of the page could be more resource intensive but very effective [Pla04]. In that case,
the OWASP article presents [Com10] a cheat sheet that describes a simple positive
security model for preventing XSS attack using output escaping/encoding property.

The attack model from OWASP treats an HTML page like a template that contains
various slots or sections as various tags for the body or the header part. In the slot,
the developer is allowed to write untrusted data, and the html encoding is a good
method to put untrusted data inside tags of html document, such as data inside
<div> tag. This will also work for the attribute of the tag where untrusted data
could be placed like <div id=“”>. However, the html encoding does not work when
the developer places untrusted data inside a <script> tag, event handler attributes
like mouseover, or in the URL, it is most likely that the page can still be Vulnerable
to XSS attack. The cookie is another negligible source of malicious code. This
piece of information is stored inside the web browser by a web application in order
to make persistent communication between them. The developer should follow the
same steps for validating and filtering cookies information that is passed to all the
users who are using this web application. In this way it can easily be modified by the
user. The implementation of security precautions for web application is significant
or important, but for that the developer needs to know about all potential and
existing attacks and the ways to prevent them. The implementation methods to
prevent these kind of attacks can be more resource intensive. This application is not

18

2.5 What is OWASP?

only resource intensive in the development phase, but it can also use more resources
when data is to be validated and encoded for output.
Writing an encoder is not a difficult task, but there are quite a few hidden pit falls
that are needed to be considered. For instance, the application might be driven to
escape the certain characters, as described above, that the attacker might use to
neutralize the attempt of making the application safe. OWASP’s project suggests
to use the OWASP ESAPI security-focused encoding library to ensure that these
security rules are properly implemented.

2.5.4 CSRF

Cross-site request forgery is similar to the XSS attack but cross-site scripting
exploits the trust that the user has for the web application. The user generally
thinks that the content displayed in the browser is the right data sent by the web
application that he or she is viewing. Moreover, the web application assumes that
if any request is performed then it is the one that the user wanted, and so the
application performs it. However, the CSRF attacks works in the opposite way, so
that it exploits the trust that the web site has for the user. It does not execute
any script in the client browser; instead, it forces an end user to execute unwanted
actions on the web application in which user is now authenticated. In the attack, the
user receives email or chats and he or she is tricked to execute the way the attacker
wants. A successful CSRF attack can compromise an entire user’s account. If the
user is an administrator, then the attacker might have control over the entire web
application. This attack can happen by storing and <iframe> tag in the
field of accepted html page and it is called ‘Stored CSRF Injection’.
The sequence chart of cross-site request forgery is shown in the Figure 2.6. It is
assumed that the victim first authenticates himself to the banking application that
is vulnerable CSRF by providing necessary information (username, password etc.).
The victim sends a request to the banking application to transfer a specific amount
of money to the account name xyz and receives the confirmation for the last transac-
tion. The attacker is informed that the same banking application can be accessed by
passing the request “http://bank.com/transfer.do?acct=XYZ&amount=100
HTTP/1.1 .’’ When the victim is still authenticated to the same banking appli-
cation, he or she receives an email from an unknown resource to view picture. The
victim, though, has no idea about what is hidden behind this link, and clicks on
the picture. At the same time, another request is sent with the bank application to
transfer 1,000,000 Euros to the account named ‘Attackers.’ The victim then receives
the message that the money is transferred. If the victim visits the link that is sent by
the attacker, but is not currently logged in to the banking application, then nothing
will happen.
The<iframe> html tag can be used to perform the cross-site request forgery attack
as shown in the Figure 2.7. The victim first is authenticated to the vulnerable

19

Chapter 2 State of the Art Review

Figure 2.6: Steps of Cross-site request forgery scripting attack with link

banking application. Furthermore, it is assumed that the victim is transferring
some Euros to the account “xyz”. In the example, though, the victim does not
receive any link from the attacker, as a suggestion for him or her to visit, as was
described above. The piece of live session cookie for the banking application is
already stored in the victim’s browser and at the same time, the victim visits to
the www.vulnerable.com websites from the next tab or same windows of the
browser. The browser loads <iframe> tag from the vulnerable web application
which was setup under CSRF Attack and makes a request to the banking application
for transferring 10,000 Euros to the attacker’s account without the victim’s consent
or awareness.

The attacker places the CSRF vulnerable code in the functionality provided by
the web application. These functionalities include: posting content to a message
board, subscribing to an online newsletter, performing stock trades. Sometimes

20

2.5 What is OWASP?

Figure 2.7: Steps of Cross-site request forgery scripting

CSRF is also used as a vector to exploit existing cross-site scripting flaws in the
vulnerable web application [Aug04], for example, assume that the online-forum or
blog is vulnerable to XSS attack. The attacker can force the user to visit that
online-forum through the CSRF link and also perform a denial of the service attack
in the right circumstances.

2.5.5 CSRF Detection and Prevention

There are two recommended methods to prevent CSRF attack; one of them is to
verify the session cookie and secure data transmission using the POST method.
However, these are not the complete solutions for resolving the CSRF attack. The
server always thinks that the piece of session information that it receives, always
comes from the valid user for further communication. Nonetheless, as described in
the XSS and CSRF attack, the session cookies can be mitigated easily without the
awareness of the valid user. This happens because the server considers the attacker
as the actual user of the hacked account. The POST method provides more security
than the GET method; still, there are numerous methods in which the victim is
tricked by the attacker who submits a forge request, such as a simple form hosted
in the attacker’s web site with hidden value, as illustrated in the Figure 2.6. The

21

Chapter 2 State of the Art Review

possibility that a web application is vulnerable is high when it is allowed to perform
a site function using a static URL or POST request that will never change.

The most popular suggestion to prevent CSRF attack is to append non predictable
challenging token with each user’s request. This happens when the user requests
a page from the server. The server first creates a session instance or extracts the
existing session object for that user from the maintained session pool. It further
generates long and secure hash based a random token by using a significantly
secure hashed algorithm, such as sha-256 etc. Then it associates the newly generated
random token as a hidden text field within the session and responds back to the
browser. The browser stores the session cookie inside the cache and places the
random token as a hidden field inside the web page. The server receives the hidden
random token and a piece of the session on each subsequent request. Further, it
verifies that the session value and hidden random token are the same as stored in
the session maintained for that user at the server’s side. If they are not the same
then the server responds back with an error message; otherwise, it generates again
a new random token and follows the same procedure, as described above.

In addition, it is important to consider some of the points during the generation
and maintenance of the token. The size of the generated token should be immensely
long, secure, and hard to predict by the attacker; otherwise, the attacker is able to
authenticate himself to the server as a valid user with a random token and session
id. However, it is possible that the XSS flaw can also grab the session token [Aug04].

2.5.6 Insecure Direct Object References

The Insecure direct object references vulnerability takes place when the web appli-
cation exposes references of an internal implementation of an object, such as a file,
URL, directory, or database key to the users. The attacker can modify the inter-
nal implementation of the object in order to gain access control on it. The ‘open
redirect’ and ‘open directory’ two categories of the vulnerabilities.

In the case of the ‘open redirect’, the user’s request is redirected to the same or a
different web application based on the parameters that have been passed with the
URL. If the URL parameters are not checked properly using ‘whitelist’ testing,
then the attacker may use this in phishing attacks to lure a potential victim to a
site of their choice and to steal their credentials [Enu04]. As the server’s name in
the modified link is identical to the original site, phishing attempts have a more
trustworthy appearance.

The sequential steps of open redirect vulnerabilities are shown in Figure 2.8. It
is believed that the victim first logs into the vulnerable web application and then
receives an email from the attacker that contains a modified link with the same server
name. The victim clicks on the link and the HTTP request is sent to the server
with the malicious parameters. The server does not validate the request parameters

22

2.5 What is OWASP?

properly and creates a response and then sends a request to the vulnerable web
application.
The same scenarios is well explained with the example of Java Servlet code as
shown in the Listing 2.3. The Java Servlet receives GET request with the URL
parameter and redirects the request to the other URL address [Enu04]. The prob-
lem with the source code is that the RedirectServlet code is used as part of an
email phishing scam by the attacker and redirects the user requests to the at-
tacker’s web application. The attacker could send an email with following link “Click here
to log in” and

Figure 2.8: Sequential steps of open redirect attack

Listing 2.3: Java Servlet Code
p u b l i c c l a s s RedirectServlet extends HttpServlet
{

protec ted void doGet (HttpServletRequest request , HttpServletResponse response←↩
) throws ServletException , IOException

{
String query = request . getQueryString () ;
i f (query . contains (" u r l "))
{

String url = request . getParameter (" u r l ") ;
response . sendRedirect (url) ;

}
}

}

23

Chapter 2 State of the Art Review

“
Click here to log in” . The user may assume that the link is safe since
the URL starts with the web application in which he is currently authenticated.
However, when the user clicks on the link, he is redirected to the attacker’s website
in which the attacker may have made appear greatly similar to the logged in web
application. In this way, the user reveals his valuable credential and may compromise
with his account.
The ‘directory traversal’ renders the important files or directory information that
is stored in the local machine where the application is running, as shown in Figure
2.9. It is assumed that the web application does not verify which file needs to be
rendered during the incoming request. The attacker first makes a request to access
report.txt file by modifying the URL and then makes a request to get information
about all the files that resides in the directory called ‘shadow’. Afterwards the
sever sends all the information about these files which resides inside the directory.

2.5.7 Insecure Direct Object References Prevention

The best way to protect the application against direct object reference attacks is
through the validation of private object references. Others include the avoidance
of the exposition of private object references to the users. For example primary
keys or filenames use the index, indirect reference map, or other indirect methods
that can be easily validate. If the user uses the direct object, then it first ensures
that the user is authorized and then exposed URL with indexing parameter such
as “http://helloworld.com/file.jsp?file=1” sets the “file” parameter to “1”
value. If the application exposes direct references to the database structures, then it
ensures that Sql statements and other database access methods only allow authorized
records [Com04c] as shown in the example below:

Listing 2.4: Java Servlet Code
Int cardId = Integer . parseInt (request . getParameter (` ` cartId ' ') ;
User user = (User) request . getSession () . getAttribute (` ` user ' ') ;
String query = ``SELECT ∗ FROM table WHERE cartID= ``+ cartID + ' ' AND userID=' ' ←↩

+ user . getID () ;

2.5.8 Broken Authentication and Session Management

Authentication is the process of verifying the entity, which the user is claiming for.
Authentication is generally performed by giving the user an id or name and one or
more items of the private information that only a right user should know [Com04b].
Session management is the process by which a server maintains the state of the
user or entity during an interaction. By maintaining the states, the server gets to
know, how to react to the subsequent requests throughout a transaction [Com04b].

24

2.5 What is OWASP?

Figure 2.9: Sequential steps of open redirect attack

The session information is maintained by the server and passed back and forwarded
during the communication between the client and the server for transmitting and
receiving requests. The session should be unique to every user and, computationally,
immensely difficult to predict.
Figure 2.10 shows the sequential steps of performing the broken authentication and
session management attack. The victim is interested to book a hotel for the vacation
through the online hotel booking web application. The victim first authenticates
himself to the online hotel web application by providing the necessary credentials.
Then, the server responds with the sessionid to the browser as shown in the Figure
2.10. Now, the victim finds some good offers in several hotels and would like to
show these offers to his friends; so, the victim sends this URL to his friends with-
out awareness that he is also giving his session ID with the URL. The attacker

25

Chapter 2 State of the Art Review

Figure 2.10: Broken Authentication and Session management

can use the same session id and credit card information stored inside the web ap-
plication. In some application framework or in web development languages, session
and authentication are not implemented correctly so that the attacker compromises
the password, keys, session tokens, or exploits other precious data by assuming the
identity of the other users.
Scenario#1: The User uses the public computer to access a website. Instead
of clicking on the logout button, the user simply closes the browser or forgets to
logout and walks away. The attacker uses the same browser after some time and
this browser is still authenticated to that website.
Scenario#2: If the password fields in the database table are not encrypted, the
insider or the external attacker can gain access.

2.5.9 Failure to Restrict URL Access

This attack is also called ‘forced browsing’, in which a brute force method is
used to find unprotected pages in the web application and to access URL links
based on specific information [Com04d]. This risk is indeed as simple as it sounds;
the user is able to access the resources, though they don’t have enough rights to

26

2.5 What is OWASP?

access them because the security control is not applied properly. This generally
happens because of the complex security model used inside a project and the project
which is sometimes difficult for security specialists and developers to understand.
If the complexity of the project increases, the probability of the error also grows
and some pages will be missed out. Sometimes, the ‘hidden’ or ‘special’ URL
is rendered to the administrator and the special users in the presentation layer.
However, this URL is also accessible for all the other users if they know that it exists
as “/admin/adduser.jsp” or “admin/moneytransfer.do.” This is prevalent to
the manu code. The application often also allows access to the ‘hidden’ files such
as static xml or system generated reports [Com04d]. So the restriction to the URL
access, is very important in the application.

2.5.10 Failure to Restrict URL Access Protection

The security experts or the developers need to plan authorization by creating a
security matrix that maps the roles to the functions of the application. It is a key step
to provision of protection against unrestricted URL access. The Web application
not only provides access control to the URL, but also confirms to the business
logic residing in the application. As it generally happened that the access control
is placed into the presentation layer, but it leaves the business layer unprotected.
Moreover, It is also not sufficient to ensure only once during the process that the user
is authorized to resources and then leaves it unchecked during the subsequent steps.
Otherwise, the attacker may skip the steps of authorization and forge the parameter
value necessary to continue on the next steps. One should assume that the users
might be aware of the special or hidden URLs or API and provide protection against.

2.5.11 Injection

The Injection flaw occurs when untrusted data is sent to the application as part
of the command, Sql query, LDAP or OS Injection. It tricks the interpreter to
execute them or gives access to unauthorized data. The developer needs to check
the interpreter when it generates a database query or command [Com04a], in order
to prevent the injection flow. Moreover, the application should not use direct inputs
from the user for constructing the SQL call, for example,

Listing 2.5: SQL Query
String query = ``select ∗ from accounts where custId='``+ reque s t . getParameter (` id←↩

')+ ' ' ' ' ' ;

The attacker modifies the ‘id’ parameter from the URL and sends ‘ or ‘1’=‘1
instead of valid input.
The full url looks like http://helloworld.com/app/accountInfo?id= ‘ or ‘1’ =

27

Chapter 2 State of the Art Review

‘1. Now the query is changed, and it will return all the records of the customer. In
the worst case, the attacker uses this weakness and takes over the complete database
host.

2.5.12 Injection Prevention

Code revision is a fast and accurate way to see, if the application uses the interpreter
safely or not. The developer sometimes tests the application by using the Code
analysis tool. It traces the data flow through the application and avoids dynamic
queries approach as well as checks the interpreter. It is also recommended to use
object relational mapping tools such as hibernate etc. that verifies the input data
on the developer’s behalf. In this case, the application uses unverified data to form
the above vulnerable SQL query. The attacker further modifies the id parameter
to ‘or ‘1’=‘1. This modified query means that, it has to return all the records
from the account tables, instead of returning to only single records. This weakness
some times discloses the database’s table information, the complete takeover of the
database, and possibly even the server hosting the database.

28

3 Java Server Faces

The Java Server Faces has given a new way of developing the Java based web appli-
cation, which creates robust user interfaces with high performance at runtime and
also requires less efforts in the software development.

The chapter begins with various web based development approaches, then the focus
moves on to MVC design pattern which is followed by the architecture and design
of the JSF framework. Finally the chapter ends with a simple application developed
by the JSF.

3.1 History

In the middle of the 1990s, the common gateway interface (CGI) was released
as a method of developing the dynamic website. Therefore, it uses various programs
in backend, such as operating system (OS) shell script, a native compiled program,
or one of the interpreted languages, such as Perl.

For every incoming HTTP request, a new CGI process is created which consumes
high resources at server side, which is considered as main disadvantage. Finally, the
architecture of CGI is also designed in such a way that it does not scale the high
performance [HS06].

The Java Servlet API was introduced in March 2008. It enables to write the
server side application program which is called ‘Servlet’ for generating the dynamic
HTML pages over the Internet. The approach of Servlet for generating the dynamic
page improves the performance in comparison to the CGI. For example, the Servlet
instance is created once during the life cycle of the servlet, and it is reused during
the subsequent HTTP request by creating a new thread each time. Besides the
performance, it also gives the Object Oriented (OO) based design approach for
the web development and provides portability. This means that it is able to execute
on any operating system, which supports Java. Nevertheless, in order to produce
dynamic HTML pages, the developer has to write the low level servlet code, which
can be extremely tedious at times.

Listing 3.1: HTML code is embedded in Java Servlet
out . println(``<table width=``\75%\ ' ' border=\``0\ ' ' align=\``center \ ' '> ' ') ; ' '

29

Chapter 3 Java Server Faces

The above Servlet code renders the <table> tag as output with the parameters
given in the code. The coding requires many opening (“) and closing (”) quote
symbols in the correct order based on the backslash. It shows that embedding the
HTML tags inside the Java Servlet code is complicated at times.

The Java Server Pages (JSP) is the next evaluation approach in the Java web-
based application. It is developed based on the Java Servlet API. Furthermore, it
provides a simple approach for the development of web-based applications, where the
HTML page is edited with special JSP tags, in order to generate dynamic pages.
The JSP container first converts the requested JSP page into the Servlet; then
the Servlet is compiled and executed immediately. The JSP based development is
more effective than the past two approaches; however, it is not a complete solution,
because, the JSP page contains JSP tags that are often written with the Java code,
which is sometimes hard to manage and is error prone. Therefore, it is necessary to
have another approach where Java code and presentation code are separated. This
is possible by using the MVC (Model View Controller) architecture.

3.2 Model-View-Controller Pattern

The web application has numerous contents on the pages which are differently visible
to different users, for example the user admin is able to view and access the entire
content of the page, whereas certain contents are not visible for a simple user.
The developer team is responsible for the design, development, and maintenance
of such a web application [Obe07]. The problem arises when the web application
supports several types of user interfaces, e.g HTML web pages for the users and
Java web pages for the developers. The same data can be fetched from different
views. Furthermore, the update of the same data can be done through different
user interfaces. Supporting multiple user interfaces should not have impact on the
component which is providing the core functionality of the web application.

It is always the best the practice to use MVC patterns to separate the core business
functionality from the presentation and control logic. This separation allows the
multiple views of the same data. This is easy to implement, test, and maintain with
multiple clients, because some developers work independently on different layers.

The following figure 3.1 demonstrates the division of aMVC pattern into the Model,
View, and Controller components and their relationships. The dashed line indicates
an indirect relationship and the solid line a direct relationship [Obe07].

• Model

The Model provides the core functionality of the application. It represents the
data and grants access to the data.

• View

30

3.2 Model-View-Controller Pattern

Figure 3.1: Model-View-Controller

The View is typically a user interface, where the user interact with the web
application through it. The interface is responsible for rendering the data of
the Model. It defines, how data will be represented, and if the data in the
Model is changed. The View has ‘read only’ access to the Model, because it
generally does not change the state of the Model [Obe07].

• Controller
The Controller handles the incoming request from the client and it calls the
method of the Model and informs the changed data from the view. It acts as
a bridge between the View and the model. If the data of the Model changes,
then it updates the data of the View as well. The Controller can select different
views according to programming logic when it gets data from the model and
about to place in the Views. In the web-based application on MVC design,
the View is simply HTML documents; the Controller (Servlet) controls the
workflow of the page and is responsible for the content within the html page.
The Model is represented by actual content stored in the database or xml files.

In the web-based application on MVC design, the View is simply HTML documents;
the Controller controls the workflow of the page and is responsible for the content
within the HTML page. The Model is represented by actual content stored in the
database or xml files.
The following scenario takes place when the user interacts with the View directly
[Obe07].

• On recognizing the occurrence of the action from the user, the View calls the

31

Chapter 3 Java Server Faces

appropriate method on the Controller.
• The Controller calls the method of the Model either by submitting the result

or fetching the data.
• Finally, the required content of the page is placed on the View by the Con-

troller.

Advantages of MVC:

• It is easy to test applications.
• It is easy to make changes in user interfaces without affecting the functionality

of the other components.
• Simultaneous multiple views of the same Model are possible.

On the other hand, there are also the drawbacks of MVC architecture:

• It increases the complexity.
• It requires a close coupling of the View with the Controller and the Controller

with the Model. For example, if there are changes of data in the View, then
additional changes are also required in the Controller.

• A strict separation between the View and the Controller is difficult.

3.3 About Java Server Faces

The JSF standards are implemented by Reference Implementation (RI) by Sun
Microsystems, Apache MyFaces and Oracle ADF Faces [SR11].
It combines good features of the Java Struts (a popular open source framework)
like StrutsServlet, which manages the life cycle of the web application, with those
of the Java Swing (Java based user interface framework for standalone applications)
for rich component models [Jav11]. So, the greatest advantage of the JSF is to
make easy user interface development, which is sometimes difficult and a time-
consuming process in the web development. It is also possible to build user Interfaces
using standard Servlet and JSP technology. Nevertheless, in long run it can lead to
maintenance problems. The JSF framework is a server side Java based framework
for developing web application interface components for web applications based on
the MVC pattern [Obe07].

• Model
The Model is represented by Simple Java Bean.

• View
The View is represented by JSP or .xhtml Page, which renders the common
HTML elements, display messages and performs a logical operation.

32

3.4 Java Server Faces Architecture

• Controller
The Controller is represented by Java Servlet which handles all incoming re-
quests and dispatches them to relevant components or pages [HS06].

3.4 Java Server Faces Architecture

The JSF framework provides server-side components for the Java based application,
as mentioned above. The framework consists of two main components.

• The first one is a JSF API which represents user interface components and
manages their life cycle and states. It also handles events, performs server-
side validations, defines page navigations, and endorses internationalization
and accessibility.

• The second one is the JSF component library which expresses user interface
components within a xhtml page.

Figure 3.2: Organization View Of JSF Application [Jen06]

Figure 3.2 shows the organization view of the JSF application. The client (browser)
requests the myform.xhtml page that contains JSF tags. The JSF container cre-
ates a web interface that is represented by myUI as mentioned in the figure. It runs
on the server and renders back to the browser [Jen06].
JSF Applications include following objects:

• The user interface components which are mapped by the JSF tags in xhtml
page.

• Event listener, validator, and convertor.
• The Java Bean Component that contains data and specific application func-

tionalities.

33

Chapter 3 Java Server Faces

3.5 JSF Web Application

A typical JSF application consists of [Jen06]

• Either .xhtml or .JSP page or both.
• A set of Java Beans that defines the properties and functionality of user

interface.
• A configuration file faces-config.xml which defines the navigation rules and

mapping of Java Beans which is optional in JSF2.0.
• A deployment descriptor file (web.xml).
• A set of custom tags for the representation of the JSF page.

The next paragraph describes the steps of a life cycle of JSF based web applications.

3.6 JSF Request Processing Lifecycle

The client sometimes passes numerous parameters within the HTTP request, and
it becomes tedious to process all of them. For example, the google search engine
supports various ways of searching information by passing a number of parameters.
However, if the size of the parameter reaches a thousand, then it will be very hard
to manage.

Listing 3.2: JSP Code
String username = request . getParameter (` ` username ' ') ;
String password = request . getParameter (` ` password ' ') ;

If the most advanced website handles thousand of parameters of this kind, then,
it becomes extremely complex and difficult to manage. The Request Processing
Lifecycle in the JSF application does all the necessary back-end processing of the
data; otherwise, the programmer needs to write his own code like in Struts, JSP,
etc. The life cycle handles incoming requests and sets incoming parameters to UI
components. It also checks if incoming data is valid or not and triggers the server
side application logic. Finally, it synchronizes or renders the response back to the
client.
The JSF life cycle phases:

• Restore View
The Restore View is the first phase in the request processing life cycle. It
restores or creates a new component tree in the server’s memory. It
also provides mirror representations of the user information presented at the
client’s side.

34

3.6 JSF Request Processing Lifecycle

Figure 3.3: The Life Cycle of the JSF Framework [Jen06]

• Apply Request Values

Once the View is created or restored in the memory, the Apply Request Val-
ues Phase gets the parameters value from the HTTP request and sets it to
respective UIComponents of the component tree by calling the process-
Decodes() method, and this is done by the JSF Runtime. Furthermore, the
setting of the parameters depends on the type of UIComponents. For exam-
ple, the TextFields, CheckBoxes, and Labels are set with value. However, the
Button and Links need to be recorded with a click event.

• Process Validations

The Process Validation Phase validates or converts the input data that is
set in the previous phase in built-in or custom UIComponents. For example,

35

Chapter 3 Java Server Faces

the InputTextField component tag with the required attribute of value set
to “true” represents a built in validation. Custom validation is possible in
two ways: The first one is by setting value to validator attributes of the
InputTextField tag. Another way is by writing a validation custom tag. It
works in the same way for conversions. If a component fails to validate the
input value, then the property is set to “false” and renders the appropriate
error message to the client.

• Update Model Values

After a successful completion of the validation and conversion on the input
data, it is assigned to theModel Object. The model object is always bounded
to the UIComponent.

• Invoke Application

Until this stage, the request processing life cycle acquires job of getting the
incoming data from the HTTP request. It is validated or converted according
to the data type [HS06], and finally assigned to the Model Object. Neverthe-
less, this phase performs actually the computation of the data by calling the
external method.

• Render Response

The Render Response is the final phase of the JSF request processing lifecy-
cle. It renders an entire response back to the client by calling the method
“encodeXX()” from each component of the component tree where the “en-
codeXX()” method renders the UIComponents back to the client. The ren-
der response phase sends the output back to the client in the form of HTML,
WML, XML, etc. Apart from sending responses back to the client, it also
saves the current state of view in the memory, in order to access and restore
upon subsequent web requests.

3.7 Guidance For Developing JSF Web Application

The development of JSF based web applications consist of the following steps [Obe07].

• Mapping of FacesServlet instances to the web.xml file.
• Creation of a .xhtml or JSP page using various user interface components

or core tags.
• Defining the page flow in the faces-config.xml file.
• Development of JavaBeans.
• Entry specification of custom tags in newly created taglib.xml files.
• Mentioning of the page flow in the faces-config.xml file.

36

3.7 Guidance For Developing JSF Web Application

3.7.1 Mapping the FacesServlet Instance To the Web.xml File

The FacesServlet is the controller of the entire web application. It obtains and
works on the HTTP request. Moreover, it has to be included by every JSF applica-
tion, and only single instance of FacesServlet is created by the application. The
following code snippet shows the binding of FacesServlet code in the deployment
descriptor web.xml file.

Listing 3.3: Mapping of FacesServlet in web.xml file
<s e r v l e t>

<disp lay−name>FacesServlet</ disp lay−name>
<s e r v l e t−name>FacesServlet</ s e r v l e t−name>
<s e r v l e t−c l a s s> javax . faces . webapp . FacesServlet</ s e r v l e t−c l a s s>
<load−on−s ta r tup>1</ load−on−s ta r tup>

</ s e r v l e t>

<s e r v l e t−mapping>
<s e r v l e t−name>FacesServlet</ s e r v l e t−name>
<url−pattern>/ appname /∗</ ur l−pattern >

<s e r v l e t−mapping>

The<servlet-mapping> tag designates that any request made by the URL, which
contains /appname/* (<url-pattern>/appname/*</url-pattern>) patterns will
be processed by the FacesServlet that is specified through the <servlet-name> tag.
The asterisk (*) after /appname/ specifies that the requested file type should be
.JSP, .xhtml or .JSF, then only it will be processed by the FacesServlet.
This section provides only information that needs to be included in the deployment
descriptor web.xml file in JSF based web applications. The next step explains the
creation of the .xhtml or . JSP page

3.7.2 Creation of .xhtml Web Pages

Every .xhtml page uses two standard JSF tag libraries, the html component tag
library and the core tag library by using taglib declaration. Moreover, the custom
tag library is also included as shown in the code snippet.

Listing 3.4: Loading standard and custom tag library in .xhtml or JSP page

<html xmlns=" http ://www. w3 . org /1999/ xhtml "
xmlns : h=" http :// java . sun . com/ j s f /html "
xmlns : f=" http :// java . sun . com/ j s f / core "

xmlns : e s a p i=" http :// e s a p i . com/ v a l i d a t i o n ">

The prefix is assigned to each library. That makes it quite easy for a developer to
map various html or core components within the .xhtml Page. The html core
component library and core library are prefixed with h and f respectively; moreover,

37

Chapter 3 Java Server Faces

the custom validator tag library is prefixed with user defined name such as esapi as
shown in the example above.
Lateron, the creation of the view is defined in the .xhtml page [Obe07]. All the JSF
component tag can be written inside the view <f:view> tag.

Listing 3.5: .xhtml or JSP page
<h : view>
<h : form id=``formId ' '>

. .
</h : form>
</h : view>

The <h:form> tag represents the set of various input components such as input-
TextFelds, checkBoxs, or menus, that allow users to fill their data. Later, the
data is sent to the server [Obe07].

Component Declaration
OutputText <h:outputText id=“outputID” value=“beanName.attribute”/>
InputText <h:inputText id=“inputID” label=“input label”

value=“beanName.attribute”/>
Defenders <h:commandButton id=“buttonID” action=“buttonAction”

value=“Submit”/>
<h:commandButton id=“buttonID” action=“result.xhtml”
value=“Submit”/>
<h:commandButton id=“buttonID” action=“beanName.action”
value=“Submit”/>

Link <h:commandLink id=“linkID” action=“linkAction”>
<h:outputText value=“linkValue”/> </h:commandLink>

The table shows the main JSF component tags that are used to build the user
interface. The user interacts with the JSF application by using the graphical user
interface. Each component tag consists of an id attribute and that needs to be
unique in the .xhtml page. This means that no two components in the same .xhtml
page can have the same value for the id attribute. The value attribute of the input
and output component tags (<h:outputText> and <h:inputText>) bind the
component to the property value of the specified Java bean.
The third component (<h:commandButton>) tag shown in the table is responsi-
ble for sending the form input data(textFields values) to the server. Each command
component tag consists of an action attribute. The developer can place either the
name of the navigation page (result.xhtml) or the method name of the user bean
(beanName.action) inside the action attribute. If the user clicks on the button
(<h:commandButton>) and if the method name of the user bean is specified in

38

3.7 Guidance For Developing JSF Web Application

the action attribute, the JSF controller calls the method of the user bean, performs
the computation, and navigates the page at the end, else directly navigates to the
page (result.xhtml) name given in the action attribute, without calling the method
of bean. The<h:commandButton> command tag consists of the value attribute
besides the id and action attributes, which displays the button name on the graph-
ical user interface. The <h:commandLink> renders an HTML anchor tag that
behaves like form’s submit button. The action attribute defines the outcome of the
link [Obe07]. The<h:commandLink> should include the<h:outputText> tag
that defines the caption of the link.

3.7.3 Defining the Page Flow

The page navigation is defined inside the configuration file faces-config.xml of the
JSF application.
The page navigation rule says that the new page has to be displayed when the current
page delivers a certain outcome when the user clicks on a button or hyperlink. The
following code snippet shows an example of the navigational rule [Obe07]:

Listing 3.6: faces-config.xml
<navigat ion−r u l e>

<from−view−id>/ login . jsp</ from−view−id>
<navigat ion−case>

<from−outcome>success</from−outcome>
<to−view−id>/ success . jsp</to−view−id>

</ navigat ion−case>

<navigat ion−case>
<from−outcome>invalid</from−outcome>
<to−view−id>/ invalid . jsp</to−view−id>

</ navigat ion−case>
</ navigat ion−r u l e>

The navigational rule is defined for the login.jsp page. There are two navigational
cases specified for the login.jsp file, one is for the ‘success’ and another for the
‘invalid’ outcome. The cases are selected based on the outcome of the login.jsp page
and executes .jsp file accordingly. If the outcome of the login.jsp fie is textbf‘success’,
then it is advised to go the success.jsp file, or the ‘invalid’ outcome displays the
invalid.jsp file. The developer can set logical outcomes (‘success’ or ‘invalid’) in
an action attribute of a commandLink or commandButton, as shown in the below
code snippets.

Listing 3.7: .xhtml Page
<h:commandButton id=" buttonID " a c t i o n=" s u c c e s s " va lue=" Submit " />

<h:commandLink id=" l inkID " a c t i o n=" s u c c e s s ">
<h:outputText value=" l inkValue " />

</h:commandLink>

39

Chapter 3 Java Server Faces

The logical outcome for the new navigating .jsp page can also come from the return
value of the method from a Java Bean. For example, there is a method which
is validating the username and password of the user. If the user enters a correct
username and password, then the method returns ‘success’; otherwise, ‘invalid’.
If the logical outcome is returned by method of the Java Bean, then it will look as
follows.

Listing 3.8: Binding outcome of User Bean’s method in .xhtml Page
<h:commandButton id=" buttonID " a c t i o n="#{userBean . checkData } " va lue=" Submit " />

<h:commandLink id=" l inkID " a c t i o n="#{userBean . checkData } ">
<h:outputText value=" l inkValue " />

</h:commandLink>

After defining the page flow, the development of the navigation flow among the
pages are done. The creation of Java Beans is presented in the next page.

3.7.4 Development of the Java Beans

The Java Bean defines the methods and properties that are linked with the user
interface components. The developer writes the application logic inside the Bean
methods. The typical JSF application couples each of the .xhtml or .jsp page with
Java Bean [Obe07]. The following example shows that the inputText component
tag binds the username property of the Java Bean (User Bean).

Listing 3.9: .xhtml Page
<h: inputText id=" userName " l a b e l=" Username " value="#{UserBean . username} ">

The declaration of the User Bean is shown in the code below.

Listing 3.10: UserBean.java
p u b l i c c l a s s UserBean
{

p r i v a t e String username = n u l l ;
p u b l i c void setUsername (String username)
{

t h i s . username = username ;
}
p u b l i c String getUsername ()
{

re turn t h i s . username ;
}

}

Every Java Bean needs to have a set and to get methods correspondent to the
attribute that will later bind with the user interface components (<h:inputText
"value="#{UserBean.username}">)

40

3.7 Guidance For Developing JSF Web Application

The next paragraph explains the declaration of the Java Beans in various scopes.

3.7.5 Adding Managed Bean Declarations

In the previous version of JSF such as JSF1.*, it was necessary to define every
managed Bean in the application configuration faces-config.xml file.

Listing 3.11: Adding managed Bean declaration in faces-config.xml
<managed−bean>

<managed−bean−name>UserBean</managed−bean−name>
<managed−bean−c l a s s>UserBean</managed−bean−c l a s s>
<managed−bean−scope> session </managed−bean−scope>
<managed− property>

<property−name> username </ property−name>
<property−c l a s s> String </ property−c l a s s>
<value>null </ value>

</managed−property>
</managed−bean>

Each bean is defined inside <managed-bean> tag. The first tag <managed-
bean-name> mentions the user-friendly name of the Bean and the second tag
<managed-bean-class> describes the name of the Java Bean class. But in
JSF2.*, the managed bean is not compulsory to mention explicitly in the appli-
cation configuration faces-config.xml file, contrary to this, it needs to be declared
in the ManagedBean@ annotation tag which is placed above the class name. The
value of the name attribute shows the user-defined name of the Java Bean in the
annotation tag.

Listing 3.12: UserBean.java with session scope
@ManagedBean (name=" user ")
@SessionScoped
p u b l i c c l a s s UserBean implements Serializable
{

}

The <managed-bean-scope> in the faces-config.xml file shows the availability
of the Java Bean in the four different scopes but they are differently declared in the
JSF2.* application by writing the annotation tag above the Java Bean class name
[Obe07]:

• None
The Bean is created new when an item is referred. It is possibily used when
one managed bean references another managed Bean.

• Request in JSF1.* and @RequestScoped annotation tag in JSF2.*
The Bean is declared with the request scope. This means that the Bean holds
the value only for the duration of the single request.

41

Chapter 3 Java Server Faces

• Session in JSF1.* and @SessionScoped annotation in JSF2.*
The Bean is stored in the session scope so that it will remain alive during
multiple requests. It will be expired or destroyed, if the session is times out or
the bean is cleaned explicitly by the application.

• Application in JSF1.* and @ApplicationScoped annotation in JSF2.*
The Bean which is declared with the application scope remains alive during
the entire lifetime of the Web server.

The initial value of the managed Bean is set by writing the tag within the<managed-
property> tag.
The names of the properties are defined by writing the name within the<property-
name> tags. The type of the property is specified by using the<property-class>
tag. The initial value can be given to the property by writing the <value> tag.
Once all parts of the development process of the JSF application are done, the JSF
application can be deployed in the Server such as Apache or JBOSS.

3.8 The Advantages of the JSF Application

(1) The clean separation of the control layer and presentation layer.

(2) Streamline web application development.
The JSF2.0 replaces the XML configuration with annotations and conventions. It
also simplifies the navigation and manages easy access of resource.

(3) Event Handling, Javascript and Ajax supports.
It provides rich architecture for user input validation, component state managing,
component data processing, new event handling and Ajax supports.

(4) Improves sectioning of development teams.
Each section is separated from each other so that the developer can work on different
modules and then integrate them later.

42

4 ESAPI
The software uses different API (application package interface) according to its
requirement such as Java logger API, encryption API, authentication API, etc. But
the main goal of ESAPI (Enterprise Security API) is to bring all the good features
of different API into one so the developer needs to integrate only one API in their
system. The ESAPI is open source, security control library from OWASP that helps
developer to write lower-risk application easily [NWS11], without requiring extensive
prior knowledge of the web application security [SP].
It provides customization according to the application requirement and designed in
such a way that it can easily retrofit security into the existing applications as well as
provides very strong foundation in the new applications. It makes developer to write
code easily, rather than writing new security features, because security is already
written inside. The ESAPI is available in many programming languages such as
Java, PHP, .Net, etc. but the basic designed is common for all of them.
The below figures 4.1 shows the web application before and after applying ESAPI.
The web application in the left side has presented security control on various ap-
plication layers separately, however, the web application at right side uses security
control only from the service layer.
Moreover, ESAPI can be used in any layer of application, as well as it can fit into
the all part of the software development life cycle.

4.1 Architecture

Figure 4.2 describes the architecture of ESAPI. It works as a middle layer between
the custom enterprise web application and existing enterprise security services. Since
it is used for minimizing the security risk in the application, it has many modules
that are responsible for preventing various vulnerabilities such as Cross

• Authenticator
This module is responsible for generating and handling the account credentials
and session identifiers.

• User
The user module represents the normal user or user accounts. There is exten-
sive information which an application needs to store for each user in order to
enforce the security properly [Com11].

43

Chapter 4 ESAPI

Figure 4.1: Before and After using ESAPI [Mel09]

Figure 4.2: ESAPI Architecture [Mel09]

44

4.1 Architecture

• AccessController
This module takes care of the access control in multiple different locations
across the various application layers such as access control for URL, business
functions, data, services and files.

• AccessRefernce Map
It maps the way from the set of internal direct object reference to the set of
indirect references that are safe to disclose in public. The potential help of this
application is to protect database keys, filenames, and other types of direct
object references.

• Validator
It provides a set of methods that validates untrusted user input.

• Encoder
This module is responsible for decoding the user input and encoding the user
output that will make the input or output safe for the variety of interpreters.

• HTTPUtilities
It contains a set of methods that provides additional security related to HTTP
request, responses, session, cookies, headers and logging.

• Encryptor
It provides set of methods for performing encryption, random number, and
hashing operations.

• EncryptedProperties
It is a property file where all the data are encrypted before they are stored
and decrypted before they are retrieved.

• Randomizer
It comprises a set of methods for creating cryptography random numbers and
strings.

• ExceptionHandling
It contains the set of exception classes designed to model the error conditions
that frequently arises in enterprise web application and web services [Com08b].

• Logger
This module constitutes a set of methods that can be used to log security
events.

• IntrusionDetector
It traces the security violations and the nature of an attack. Instead of storing
all the required information to detect an attack, it stores the minimal set of
information for the detection, which reduces the load of the system.

45

Chapter 4 ESAPI

• Security Configuration

It stores all the configuration information that directs the behavior for the
ESAPI implementation.

4.2 How does ESAPI Work?

ESAPI works by providing some additional security features which were not fully
available before. The two examples below will clearly explain what the drawbacks
with the existing systems were and how ESAPI overcomes it.
Insecure example:

It is an example of an insecure demonstration where any text entered by the user
in the textfield will become a part of the webpage [SP].

Listing 4.1: Simple.jsp
String name = request . getParameter (` name ') ;
<p> Hel lo World,<%=name%></p>

When the above code is executed, the output will be shown in the web page right
after the ‘Hello World’ is popped out. If the attacker enters the vulnerable script,
then it will become part of the web page and will be executed in the client browser
performing some unwanted actions.
Secure example:

The secure example shows how the above problem is solved.

Listing 4.2: ESAPI integrated with Simple.jsp
<p> Hello World ,<%= ESAPI . encoder () . encodeFORHTML (name) %></p>

The example above prevents the Injection attack by encoding vulnerable characters
in the output. As for example ‘<’ will be encoded to < , ‘>’ will be encoded as
> and many other characters will be encoded in a similar way.
In the next paragraph, another example is shown
Output Rich Content insecure example:

Nowadays, much more data exists in the internet that contains high quality infor-
mation. This information includes markup and the data is intended to be parsed,
rendered, or executed at the client browser. Ensuring that this high quality infor-
mation does not contain malicious code is sometimes extremely difficult.

46

4.2 How does ESAPI Work?

Listing 4.3: Simple.jsp
String markup= input . replaceAll (``<script>' ' , ` ` ' ') ;

<%=markup%>

The developers sometimes use one method to prevent XSS attack from their appli-
cation that filters out the <script> tag [SP]. It seems like it prevents an attack
involving JavaScript which contains some flaws. If the attacker writes a code with
input ‘<scri<script>pt>’ tag, then it passes through the method that filters it.
However, the inner <script> tag will be removed from the input and two halves
of the <script> tag will come together and, finally, form an attack.
Output Rich Content secure example:
The example below shows how the above problem is solved

Listing 4.4: ESAPI integration with Simple.jsp
Validator instance = ESAPI . Validator () ;
markup = instance . getValidSafeHTML () ;

<%= ESAPI . encoder () . encodeForHTML (markup)%>

The method validSafeHtml() filters out any vulnerable script from the user input.
After the output ‘markup’ passes as input to encodeForHTML(), which encodes
the tricky characters.
The next section presents the direct integration of ESAPI in JSF framework.

4.2.1 ESAPI in Presentation Layer of JSF Based Web
Application

The JSF Code snippet below shows the direct integration of ESAPI in the
.xhtml page of JSF based web application. The <h:outputText> tag is used to
create a component for displaying formatted output as basic text on the JSF Page.
The value attribute of the tag sets “user.email” as the email id of the user bean for
this component. However, The encodeForHTML() of ESAPI class is also used
inside the value attribute, that should take the email id of the user bean as input
and return the encode email id as output, afterward, the encoded email id need to
pass to <h:outputText> tag component. However, JSF2.0 does not support direct
integration of ESAPI in the presentation layer of the JSF based web application.

Listing 4.5: Direct integration of ESAPI in .xhtml
<html >
. .

<h : outputText value="#{ESAPI . encoder () . encodeForHTML (user . emai l) } " ></h :←↩
outputText>

. .
</html>

47

Chapter 4 ESAPI

Because all the tag components in the presentation layer of JSF based web applica-
tion are tightly bound, however, ESAPI integration works well inside the JSP page
or other programming languages, as shown in the example [Listing-4.2 and 4.4].

4.2.2 ESAPI in Business Layer of JSF Based Web Application

This section describes how ESAPI is directly integrated in the business layer, instead
of presentation layer. The below code snippet displays the email id of the user bean
on the jsf page. The <h:outputText> tag takes email id of the user Bean and
displays it on the web page.

Listing 4.6: result.xhtml
<html >
. .

Email Id :− <h : outputText value="#{user . emai l } "/>
. .

</html>

(1) The ESAPI integration in the user bean.

The user Bean class contains setter and getter method for email id. The setEmail()
method sets the email id from the user input. It is assume that user writes
“<script>alert(1);</script>” in email id field. The get method returns the
string value “<script>alert(1);</script>” after passing it to the encoder-
ForHTML method of ESAPI that encodes the vulnerable characters such as < to
< ext.

Listing 4.7: UserBean.java
@ManagedBean (name=" user ")
p u b l i c c l a s s UserBean implements Serializable {

p u b l i c String getEmail () {
re turn ESAPI . encoder () . encodeForHTML ("<s c r i p t >a l e r t (1) ;</ s c r i p t >") ;

}

p u b l i c String setEmail (String email) {
t h i s . email = email ;

}

}

The encoded string value is afterwards passed to the <h:outputText> tag component
and it displays “<script>alert(1);<script>”
as output.

It shows that the value “<script>alert(1);</script>” is encoded by two dif-
ferent encoder, first it is encoded by encodeForHTML method of ESAPI then
encoded result is passed to HtmlEncoder of the <h:ouputText> component tag

48

4.2 How does ESAPI Work?

Figure 4.3: JSF Application with ESAPI

of JSF framework. Double encoding of the same email id leads to inappropriate
result on the screen as shown in the figure.

(2) The user Bean without ESAPI integration.

The below code snippet express that the getEmail() method simply returns
“<script>alert(1);</script>” as email id of the user Bean.

Listing 4.8: UserBean.java
@ManagedBean (name=" user ")
p u b l i c c l a s s UserBean implements Serializable {

p u b l i c String getEmail () {
re turn "<s c r i p t >a l e r t (1) ;</ s c r i p t >" ;

}

}

The screenshot 4.4 displays the meaningful output “<script>alert(1);</script>”
on the page. It shows that the email id of the user Bean is encoded once by Htm-
lEncoder of the <h:ouputText> tag component and displays readable output on
the JSF page.

The last two examples show the direct integration of ESAPI in presentation and
business layer, and sometimes it propagates inappropriate result on the JSF page.

49

Chapter 4 ESAPI

Figure 4.4: JSF Application without ESAPI

4.3 Invalidate User Input

The validation of the user input in the client side is very important for securing
application. Some of the web application fails to validate input properly and this
leads to major vulnerabilities in the application such as Sql Injection, XSS Injection,
file system attack, and buffer over flow. There is also a possibility that the client
may tamper the data and that needs to be verified before storing it into the system
or responding back to the client browser, as shown in the above two examples.
Sometimes the detection and prevention of an attack is not a complete solution
until and unless the intrusion detection is performed in the application. Otherwise,
the attacker performs repeated attack.

4.4 Performance versus Security

The second important criterion is to find balance between performance and security
provided by ESAPI API. Suppose there is one web application, which is being used
by thousands of people simultaneously. It is desirable to send a fast response from
the application [NWS11]. In the context of security, it does not mean that someone
should compromise with the system security in order to gain greater performance. It
should rather be understood as a point of a policy to achieve. There are some options
available to attain a greater performance by having constant security level check that
the program uses with smaller duration. So, this mean is to choose an algorithm

50

4.5 Improvement

thoughtfully, reduce redundancy, or select the right programming language, etc.

4.5 Improvement

In this part, it will be analyzed whether or not it makes sense to retrofit security
existing application [NWS11]. One of the goals of ESAPI design is to make it easier
for developers to retrofit security in existing application. An analysis of potential
violations of security in IT-system is called ‘Threat’. This kind of threat generally
needs to be considered in the beginning of the development process. Otherwise, it
will become difficult to analyze security issues in very complex system. That’s why
retrofit security in existing application is just patch work and should be used at the
last resort.

51

5 Description of Our Approach

With all this theoretical background about basic security issues, JSF framework
and ESAPI, it is time to make something useful out of it. The beginning of this
section describes the architecture of the newly developed security framework.
Afterwards each component of the framework is explained separately. Hence, the
last section takes to the series of configuration steps in order to use the security
framework in JSF2.0.

5.1 Why Security Framework?

The JSF2.0 framework uses HTMLEncoder class to encode certain characters,
such as “<” ,“ >” ,“&” and “”” then sends a response back to the client. Still
there are also some vulnerable characters left that need to be encoded otherwise, they
could harm the application as well, such as /,’, etc. So, JSF needs integration of the
third party library which encodes the characters based on some security standard
provided in the XSS prevention cheat sheet from OWASP. It is not a complete
solution, but it is an efficient solution accepted by many organizations. The built
in validators provided by JSF2.0 are not sufficient to filter the XSS content from
the user input. Thus, it is necessary to have an efficient validator tag that validates
the user input before storing input data into the database or processing it. Another
important area to focus on is the separation of the presentation layer for the different
users as the given rights.
For example, based on the user’ rights, they are allowed to access certain parts of
the presentation layer. Furthermore, there should always be new random tokens
placed in the JSF form, in order to prevent the CSRF attack. If the form token and
the token which is stored in the session for that user do not match, then there is a
need to give an appropriate error message. There may be many areas that require
security improvements, but so far we have covered only few in this work. The next
paragraph describes the overall architecture of the JSF-ESAPI framework.

5.2 Architecture of the Security Framework

Figure 5.1 shows the request processing life cycle of the JSF2.0, the architecture of
the newly developed JSF-ESAPI security framework and ESAPI. When user sends

52

5.2 Architecture of the Security Framework

Figure 5.1: JSF-ESAPI Framework Architecture

an http request, it is processed by the JSF framework, it then passes some input to
the JSF-ESAPI security framework, in order to make sure that input data is secure.
Afterwards, the JSF framework performs the computation and responds back to the
client. First we will describe the part of the security framework which is responsible
for validation.

5.2.1 Validation Module

The Validation module is responsible for:

• Verifying the user input as given in the XSS prevention cheat sheet from
OWASP and generating appropriate error messages upon the invalid user in-
puts.

• Filtering the XSS vulnerable code from the user input.

For verifying the user input and filtering XSS vulnerable content, we have ported
ESAPI Java Validator in a new JSF-friendly library, which is now part of the
validation module and the new sets of validator tags can easily be integrated into a
page.

53

Chapter 5 Description of Our Approach

Figure 5.2: Architecture of Validation Module

5.2.2 Filtering Module

The communication between the Filtering module and restore View phase of JSF
Request Processing life cycle is shown in the Figure 5.3. The Filtering module is
first registered in the JSF based web application, then it intercepts each incoming
http request and passes that request to the restore view phase of JSF life cycle. It
consists of a new tag library which is responsible for the adding new random tokens
in the JSF page upon each new http request from the user.

The Filtering module

• Adds a new random token for each form during each http response;

• Validates the form token with the token stored in the session for that user
in each http request, if the token is changed or missing, the application will
generate the appropriate exception.

This module provides protection against Cross-site request forgery (CSRF), since an-
other page would not know the value of this token and csrfguard from theOWASP
does not offer integration with JSF based web application.

54

5.2 Architecture of the Security Framework

Figure 5.3: Architecture of Filtering Module

5.2.3 File Based Authorization

Figure 5.4 shows the association of the File Based Authorization module with Update
Model Values phase of JSF life cycle. The File Based Authorization module contains
a new JSF-based tag library which is responsible for separating the presentation layer
on the JSF page.
The File Based Authorization is responsible for:

• Maintaining the user information in the file with their assigned roles.
• Setting the rendering components false, if the accessible user tries to retrieve

the page.
It gives permission to visualize certain areas at the presentation layer as per given
user rights.

5.2.4 Render Response

Figure 5.5 demonstrates the connection between Render Response modules of
JSF-ESAPI security framework and the Render Response phase of JSF life

55

Chapter 5 Description of Our Approach

Figure 5.4: Architecture of File Based Authorization Module

cycle. The Render Response module of security framework overrides the
existing Response writer class of the JSF application which is responsible for
rendering output on the JSF page. The Response Writer class uses the default
HTMLEncoder class to encode certain vulnerable characters such as ‘<”,‘>’,‘&’
and ‘” ’; but it is sometimes not enough for better security so other vulnerable
characters such as ‘/’,‘”, etc. needs to be encoded as well.

The Render Response module is responsible for

• Encoding vulnerable characters from output.

• Filtering XSS enable code from the output when escape is equal to “true”
or “false”.

All four modules in our security framework focus on the different security features in
the JSF based web application. How all the four modules are configured with JSF
based web application, in order to improve security, is explained in the following
section.

56

5.3 Configuration of Security Framework in JSF Based Application.

Figure 5.5: Architecture of Render Response Module

5.3 Configuration of Security Framework in JSF
Based Application.

This Section takes us to the implementation of the four security modules explained
in previous sections and provides the detail, how they make differences in the real
implementation.

5.3.1 Components of Validation Module

Figure-5.6 illustrates the components inside the validation module as well as their
interaction with JSF Framework and ESAPI.

• ESAPIValidator Class

It implements the Validator interface from the JSF framework and overrides
the validate() method. The method contains the real implementation of
various validation tags inside. All the tag methods communicate with ESAPI,
during the input validation and generat an appropriate message after the input

57

Chapter 5 Description of Our Approach

Figure 5.6: Components of Validation Module

check. The unique validator ID is assigned to the ESAPIValidator class with
the @FacesValidator annotation. That helps to link the ESAPIValidator
class in the user-defined esapi.taglib.xml file.
The important ESAPI validators have been ported inside the ESAPIVal-
idator class. So they can be used in form of JSF user-friendly validator tags
in the JSF page, instead of configuring or using them directly.

• Esapi.taglib.xml
It defines the namespace for the newly created JSF-friendly tag library as well
as defining various user-friendly validator tags that can easily be integrated in
the JSF Page via esapi:validation.

The developer can use these user-friendly tags in the JSF page, which provides
additional features over the existing JSF-tag library, moreover, some of the tags
help to filter cross-site scripting (XSS) content from the input.

5.3.2 Configuration Steps of the Validation Module.

The following steps are required, in order to configure the validation module in JSF
applications.

58

5.3 Configuration of Security Framework in JSF Based Application.

(1) Import the newly created JSF based tag library descriptor xml file “esapi.taglib.xml”
from the JSF-ESAPI security framework.
(2) Configure the tag library in the web.xml file.
(3) Include the namespace of the tag library in the JSF page.
(4) Use various tags in the JSF page.

(1) Import the newly created JSF based tag library descriptor xml file
“esapi.taglib.xml” from the JSF-ESAPI security framework.

The code below snippet describes the various tags used inside the “esapi.taglib.xml”
file.

<?xml v e r s i o n=" 1 .0 " ?>

<f a c e l e t−t a g l i b v e r s i o n=" 2 .0 ">
<namespace>http: // esapi . com/ validation</namespace>

. .
<tag>

<tag−name>validation</ tag−name>
<v a l i d a t o r>

<v a l i d a t o r−id>esapiValidator</ v a l i d a t o r−id>
</ v a l i d a t o r>

<a t t r i b u t e>
<d e s c r i p t i o n>name of validation</ d e s c r i p t i o n>

<name>name</name>
<r e q u i r e d>true</ r e q u i r e d>

<type>java . lang . String</ type>
</ a t t r i b u t e>

<a t t r i b u t e>
<d e s c r i p t i o n>format attribute will use for the date validation</←↩

d e s c r i p t i o n>
<name>format</name>
<r e q u i r e d>false</ r e q u i r e d>
<type>java . lang . String</ type>
</ a t t r i b u t e>

<a t t r i b u t e>
<d e s c r i p t i o n>encoding attribute is used for file conding </←↩

d e s c r i p t i o n>
<name>encoding</name>
<r e q u i r e d>false</ r e q u i r e d>
<type>java . lang . String</ type>
</ a t t r i b u t e>

</ tag>
. .

</ f a c e l e t−t a g l i b>

• <namespace> - It specifies the namespace
http://esapi.com/validation</namespace> for the tag library and It
should be given a unique name to avoid conflicts among other taglib files.

• <tag> - It specifies various user-defined written tags.

<tag-name> - It gives the name to the name and the same name used
in the JSF page.

59

Chapter 5 Description of Our Approach

• <validator> - It contains the child tag <validator-id> that shows the im-
plementation of the custom validator tag such as “esapiValidator” defined in
the@FacesValidator annotation of the “ESAPIValidator class”(described
in 5.3.1).

• <attribute> - It shows the various attributes associated with the validator
tag. It consists of many child tags, such as the

<description> - It describes the attribute.
<name> - It is name of the attribute.
<required> - It checks if the tag attribute is mandatory or not.
<type> - type of the attribute.

Representation of the ESAPIValidator Class.
The following source code listing shows the “ESAPIValidator” class that imple-
ments the Validator interface.

Listing 5.1: EsapiValidator.java
@FacesValidator (value=" e s a p i V a l i d a t o r ")
p u b l i c c l a s s EsapiValidator implements Validator {

p r i v a t e String name ;
p r i v a t e String format ;
p r i v a t e String encoding ;

p u b l i c void validate (FacesContext context , UIComponent component , Object ←↩
value) throws ValidatorException {

String textValue = (String) value ;

i f (name != n u l l && name . toUpperCase () . equals (EsapiConstant . DATE)) {
Boolean flag = isValidateDate (textValue) ;
i f (flag == n u l l | | ! flag) {

FacesMessage msg = new FacesMessage (EsapiConstant .←↩
DATE_VALIDATION_FAILED , EsapiConstant . INVALID_DATE_FORMAT) ;

msg . setSeverity (FacesMessage . SEVERITY_ERROR) ;
throw new ValidatorException (msg) ; } }

e l s e i f (name != n u l l && name . toUpperCase () . equals (EsapiConstant .←↩
CREDITCARD)) {

Boolean flag = isValidateCreditCard (textValue) ;

i f (flag == n u l l | | flag) {
FacesMessage msg = new FacesMessage (EsapiConstant .←↩

CREDIT_CARD_VALIDATION_FAILED , EsapiConstant .←↩
INVALID_CREDIT_CARD_FORMAT) ;

msg . setSeverity (FacesMessage . SEVERITY_ERROR) ;
throw new ValidatorException (msg) ; } }

. .

e l s e {
FacesMessage msg = new FacesMessage ("HTML v a l i d a t i o n f a i l e d . " , " Enter ←↩

TextFie ld Value . ") ;
msg . setSeverity (FacesMessage . SEVERITY_ERROR) ;
throw new ValidatorException (msg) ; } }

p r i v a t e boolean isValidateDate (String textValue) throws ValidatorException ;
p r i v a t e boolean isValidateCreditCard (String textValue) throws ←↩

ValidatorException ;
}

60

5.3 Configuration of Security Framework in JSF Based Application.

The @FacesValidator annotation on the class automatically registers the class
“EsapiValidator” with the runtime as a Validator [API10a] and it maps the value
“esapiValidator” to the <validator-id> (as explained before) in
“esapi.taglib.xml” , instead of writing the fully-qualified class name.
The ESAPIValidator class contains the attribute’s name, format, and encoding.
Correspondence to each attributes, there are get-method and set-method, e.g.
getName() and setName(). Furthermore, it contains the method for the valida-
tion tag, i.e. the validate(FacesContext context, UIComponent component,
Object value) and parameters of the method are explained below.

• FacesContext - Context of the JSF.
• UIComponent - The Input component.
• ObjectValue - The value of the Input component that needs to be verified.

The name attribute inside the validator method represents the type of validation
that needs to be performed. If name attributes are set toDATE value then it verifies
the date entered by the user in the Input component or if it is set to CREDIT-
CARD then it validates the credit card value.
If the value entered by the user in the Input Component is invalid then it will
generate the appropriate error message. There are many kinds of validation tags
written and they are described in the next paragraph.
The next section shows, how to configure a “esapi.taglib.xml” file in the web.xml
file.
(2) Configure the tag library in the web.xml file.
The “esapi.taglib.xml” file needs to be configured inside the web deployment
descriptor file “web.xml”, in order to use the new sets of validator tags in the JSF
page.

Listing 5.2: web.xml
<?xml v e r s i o n=" 1 .0 " encoding="UTF−8" ?>
<web−app >

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
<context−param>

<param−name>facelets . LIBRARIES</param−name>
<param−value>/WEB−INF/ esapi . taglib . xml</param−value>

</ context−param>
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

</web−app>

• <context-param> - It declares the web application’s servlet context ini-
tialization parameters [Com08a], so that all the servlets can access them at
runtime.

<param-name> - It initializes the “facelets.LIBRARIES” parameter
name for the servlet.

61

Chapter 5 Description of Our Approach

<param-value> - It specifies the path “/WEB-INF/esapi.taglib.xml”
for the “esapi.taglib.xml” file that will be used by the facelet servlet during
the built in library processing.

With this configuration the JSF based web application registers the
“esapi.taglib.xml” file in the Facelet Context so that the JSF page can use the
newly created validator tags later.
(3) Integrate validator tag in the .xhtml page.
The code snippet below shows how a developer can use the built in ESAPI validator
tag inside the .xhtml page.

Listing 5.3: index.xhtml
<html xmlns=" h t t p : //www. w3 . org /1999/ xhtml "

xmlns:h=" h t t p : // java . sun . com/JSF/html "
xmlns : f=" h t t p : // java . sun . com/JSF/ core "
xmlns : e sap i=" h t t p : // e s a p i . com/ v a l i d a t i o n ">

<h:form>
Enter your email:
<h: inputText id=" emai l " va lue="\#\{ user . c red i tCard \} " r e q u i r e d="\#\{ true \} " ←↩

l a b e l=" Enter Cred i tcard ">
<e s a p i : v a l i d a t i o n name="CREDITCARD" />

</ h: inputText>

More Information:
<h: inputText id=" d e t a i l " va lue="\#\{ user . d e t a i l \} " r e q u i r e d="\#\{ true \} " ←↩

l a b e l=" Enter User D e t a i l ">
<e s a p i : v a l i d a t i o n name="HTMLVALIDATION" />

</ h: inputText>

<h:commandButton value=" Submit " a c t i o n=" r e s u l t " />
</ h:form>

</html>

The entry for the user-defined validator tag is specified inside the “esapi.taglib.xml”
as described before. The same namespace “http://esapi.com/validation” of the
file needs to be included in the .xhtml, where the user-defined validator tags are
integrated. The namespace “xmlns:esapi=http://esapi.com/validation” is in-
cluded right after the “core” and the “html” tag libraries in the .xhtml page.
So the different user-defined validators can be used within the .xhtml page as per
requirements.
The .xhtml page described above validates the creditcard of the user. The .xhtml
page gives an example of creditcard validation. The two child tags are held within
the <h:form> tag, such as <h:inputText> and <h:commandButton> tag.
The user-defined validator tag<esapi:validation name=“CREDITCARD”/>
is written within the <h:inputText> that validates the user’s entered creditcard
value.
Another input text field requires the user to enter more details. The
<esapi:validation name=“HTMLVALIDATION”/> tag is placed within the
<h:inputText> field as shown in the code above. It filters the cross-site scripting

62

5.3 Configuration of Security Framework in JSF Based Application.

(XSS) content from the input value of the inputText field and later it will set to the
detail property of the user Bean (user.detail). If the user enters invalid data in
one of the text fields it will display an appropriate error message on the .JSF page.
The table below shows the new sets of user-defined validator tags that are
ported from theESAPI to the newly developed JSF-ESAPI security framework.
The first field in the table displays the name of the validation, the second one shows
the mandatory attributes associated with the validation tag, and the last one gives
the description of the tag.

Validation name Attributes Description
DATE — Validates correct date.
CREDITCARD — CreditCard validation.
HTMLVALIDATION — Filters the XSS content from the user input.
LENIENTDATE Format Validates the date when Format =“Short”,

“Medium”, “Long” or “Full’
FILE — Checks whether file path is correct.
FILECONTENT Encoding Validates the content of file.
VALIDFILENAME — Validates filename.
EMAIL — Checks the email address.
IPADDRESS — Checks the IP Address.
URL — Validates the URL.
SSNVALIDATION — Checks SSN Number.

As described in the above section, the validation module contains various user-
defined validator tags that are directly ported from the ESAPI security library, so
that the developer just needs to place them in the .xhtml page for special kind of
validations. It reduces burden when writing the security code as well as reduces
configuration overheads.

5.3.3 Components of Filtering Module

Figure-5.7 represents the different components of the Filtering module of the security
framework. And the container on the top is JSF framework which interact with the
Filter module as shown in the figure.

• OwaspCSRFSessionListener Class

It is a HTTP listener class which is called on every listener event in the JSF
application. The OwaspCSRFSessionListener class is registered in the web.xml
file as listener. The listener class generates the random no. and places it in
the session of the requested user. The same random no. is later used by the
OwaspCSRFTokenInput, in order to place it on the form [Eis08].

63

Chapter 5 Description of Our Approach

Figure 5.7: Components of the Filtering Module

• OwaspCSRFForm Class
The OwaspCSRFForm class extends the HtmlForm class of the JSF frame-
work. It places object of OwaspCSRFTokenInput class as a child compo-
nent of the form [Eis08].

• OwaspCSRFTokenInput Class
TheOwaspCSRFTokenInput component class places the generated random
token on the OwaspCSRFForm [Eis08].

The Filtering module adds a new random token on the form page that is unique
among all the different requested users. The module compares the Form token value
with the token value which is stored in the session for that user. If the requested
Form token and the token value stored in the session for the same user are not
identical then it will generate an appropriate error message.

5.3.4 Configuration Steps of the Filtering Module.

The following steps are required in order to configure the Filtering module in the
JSF application.
(1) Place entry of OwaspCSRFSessionListener class in the web.xml file.
(2) Use <esapi:owaspCsrfToken> component tag in the .xhtml page.

(1) Place entry of OwaspCSRFSessionListener class in the web.xml file.
The OwaspCSRFSessionListener listener class is added in the web deployment
descriptorweb.xml file. The<listener> is an event declaration tag in the web.xml

64

5.3 Configuration of Security Framework in JSF Based Application.

file [API10b]. The event declaration defines the listener class OwaspCSRFSes-
sionListener inside <listener-class> tag that will invoke when the event occurs
for the first time.

Listing 5.4: web.xml
<web−app >

. .
<listener>

<description>OwaspCSRFSessionListener </description>
<listener−c l a s s >esapi . unifreiburg . csrf . OwaspCSRFSessionListener </listener−←↩

c l a s s >
</listener>
. .

</web−app>

The <listener> element directly follows the <filter> and <filter-mapping>
elements and directly precede the <servlet> element.
The Java code below describes the OwaspCSRFSessionListener class which im-
plements HttpSessionListener interface. It generates new CSRF random token in
each user request for the .xhtml page and places the generated token into the user
session.

Listing 5.5: OwaspCSRFSessionListener.java
p u b l i c c l a s s OwaspCSRFSessionListener implements HttpSessionListener {

p r i v a t e f i n a l s t a t i c String CSRFTOKEN_NAME = "CSRFTOKEN_NAME" ;

p u b l i c void sessionCreated (HttpSessionEvent event) {
HttpSession session = event . getSession () ;
String randomId = generateRandomId () ;
session . setAttribute (CSRFTOKEN_NAME , randomId) ;

}

p r i v a t e String generateRandomId () ;
s t a t i c p r i v a t e String hexEncode (byte [] aInput) ;

}

The OwaspCSRFForm class places the same generated token in the HTML form.

Listing 5.6: OwaspCSRFForm.java
p u b l i c c l a s s OwaspCSRFForm extends HtmlForm {

p u b l i c void encodeBegin (FacesContext context) throws IOException {
OwaspCSRFTokenInput owaspCSRFToken = new OwaspCSRFTokenInput () ;
owaspCSRFToken . setId (t h i s . getClientId () + "_CSRFToken") ;

getChildren () . add (owaspCSRFToken) ;
super . encodeBegin (context) ;

}
}

The OwaspCSRFTokenInput compares the generated random token with the
token stored in the user session. It contains two method encodeEnd(FacesContext
context)

65

Chapter 5 Description of Our Approach

Listing 5.7: encode method in OwaspCSRFTokenInput.java
@FacesComponent (value = " owaspCsrfTokenComponent ")
p u b l i c c l a s s OwaspCSRFTokenInput extends UIComponentBase
{

p r i v a t e s t a t i c f i n a l String CSRFTOKEN_NAME = "CSRFTOKEN_NAME" ;
p u b l i c void encodeEnd (FacesContext context) throws IOException
{

HttpSession session = (HttpSession) context . getExternalContext () .←↩
getSession (f a l s e) ;

String token = (String) session . getAttribute (CSRFTOKEN_NAME) ;

ResponseWriter responseWriter = context . getResponseWriter () ;
responseWriter . startElement (" input " , n u l l) ;
responseWriter . writeAttribute (" type " , " hidden " , n u l l) ;
responseWriter . writeAttribute ("name" , (getClientId (context)) , " c l i e n t I d ")←↩

;
responseWriter . writeAttribute (" va lue " , token , "CSRFTOKEN_NAME") ;
responseWriter . endElement (" input ") ;

}

}

The decode method compares the random generated token of the form and token
stored for that particular user. The getClientId() gives the id of the form and
based on the id, it will look for the random token from the session. It token
values are different then it will throw an exception that CSRF Token is missing.
So it will prevent the CSRF attack, even though the session cookie gets stolen.

Listing 5.8: decode method in OwaspCSRFTokenInput.java
@FacesComponent (value = " owaspCsrfTokenComponent ")
p u b l i c c l a s s OwaspCSRFTokenInput extends UIComponentBase
{

p r i v a t e s t a t i c f i n a l String CSRFTOKEN_NAME = "CSRFTOKEN_NAME" ;

p u b l i c void decode (FacesContext context)
{

String clientId = getClientId (context) ;

ExternalContext external = context . getExternalContext () ;
Map requestMap = external . getRequestParameterMap () ;
String value = String . valueOf (requestMap . get (clientId)) ;

HttpSession session = (HttpSession) context . getExternalContext () .←↩
getSession (f a l s e) ;

String token = (String) session . getAttribute (CSRFTOKEN_NAME) ;

i f (value == n u l l | | " " . equals (value))
{

throw new RuntimeException ("CSRFToken i s miss ing ! ") ;
}

i f (! value . equalsIgnoreCase (token))
{

throw new RuntimeException ("CSRFToken does not match ! ") ;
}

}

}

66

5.3 Configuration of Security Framework in JSF Based Application.

In this way, the generated Cross-site request forgery attack can be prevented.

5.3.5 Components of Authorization Module

The Figure 5.8 below elaborates the various components of the Authorization
module and their interaction with the JSF Framework as well as user.txt file.

Figure 5.8: Component of File Based Authorization

• EsapiAuthorization Class

The EsapiAuthorization class is responsible for rendering the various user
interface components on the screen. It extends the UIOutput class of the
original JSF framework. First the user needs to be registered in the file system
called user.txt file. The user.txt file contains various information about user
such as user role, user creation time.

• User.txt

It is stored in the computer server memory and it is a crucial file that contains
the credentials for the different users with their roles, names, account ids,
etc. The file also stores when the user logged in into the system last. The
EsapiAuthorization class always communicates with the User.txt file and finds
the roles associated with the users. If the associated role is admin or the role
user wants then it won’t render the UIComponent on the page.

• Esapi.taglib.xml

The esapi.taglib.xml file is used to mention the user defined tag in the file.
It is a configuration file as explained before in section 5.3.2

67

Chapter 5 Description of Our Approach

The JSF framework enters the user information about the user in the user.txt file
with various other information and EsapiAuthorization class later reviews details,
in order to let the various UIComponent on the screen.

The main purpose of the Authorization module is to provide separation of the graph-
ical user interface (content on the .xhtml) separate for the different users based on
the user role. It contains the user-defined tag that helps the separation of the JSF
page

5.3.6 Configuration Steps of the Authorization Module.

The following steps are required, in order to configure the Authorization in the JSF
application.

(1) Import the newly created JSF based tag library descriptor xml file
“esapi.taglib.xml” from the JSF-ESAPI security framework.
(2) Configure the tag library in the web.xml file (as shown in the section 5.3.2).
(3) Include the namespace of the tag library in the JSF page (as shown in the
section 5.3.2).
(4) Use the authorization tag in the JSF page.

(1) Import the newly created JSF based tag library descriptor xml file
“esapi.taglib.xml” from the JSF-ESAPI security framework as explained
in section 5.3.2

The below xml file represents the esapi.taglib.xml file that is already explained
(section 5.3.2).

Listing 5.9: esapi.taglib.xml
<?xml version=" 1 .0 "?>
<facelet−taglib version=" 2 .0 ">

<namespace>http : // e s a p i . com/ v a l i d a t i o n </namespace>
. .

<tag>
<tag−name>authorization </tag−name>

<component>
<component−type>esapiAuthorization </component−type>

</component>

<attribute>
<description>Enter User Role</description>
<name>role</name>

<required>true </required>
<type>java . lang . String</type>

</attribute>
</tag>

. .
</facelet−taglib>

68

5.3 Configuration of Security Framework in JSF Based Application.

The tag lib file contains addition tags for authorization. The <tag-name> gives the
name of the tag that is used in the JSF page for separation of the presentation layer.

• <component> The component type links the tag to the actual class esapi-
Authorization class.

• <attribute> The attribute tag represents the attribute associated with the
esapiAuthorization tag.

<description> - gives the description about the attribute
<name> - name of attribute(role) that will be associated with esapiAu-

thorization tag (such as <esapi:esapiAuthorization role=“admin”/>)
<required> - attribute represents that the role attribute is compulsory

to write because it is set to “true”.
<type> - is a type of the attribute.

So in this way the authorization tag is defined inside the “esapi.taglib.xml” file.
The below paragraph shows the code snippet of the EsapiAuthorization class.
The @FacesComponent annotation registers the EsapiAuthorization class as a
component at runtime with user-friendly name called “esapiAuthorization” and
the same name developer is used it in the “esapi.taglib.xml” file’s <component-
type> as shown previously.

Listing 5.10: EsapiAuthorization.java
@FacesComponent (value = " e s a p i A u t h o r i z a t i o n ")
p u b l i c c l a s s EsapiAuthorization extends UIOutput {
p r i v a t e String role ;
p u b l i c void encodeBegin (FacesContext context) throws IOException {

Authenticator authenticator = FileBasedAuthenticator . getInstance () ;
User user =authenticator . getCurrentUser () ;
i f (user != n u l l) {

User fileBaseUser = authenticator . getUser (user . getAccountName ()) ;
i f (fileBaseUser != n u l l) {

Set<String> roles =fileBaseUser . getRoles () ;
boolean roleFlag = f a l s e ;
Set<String> currentUserRoles = user . getRoles () ;
Iterator<String> iterCurrentUserRole = currentUserRoles . iterator←↩

() ;
whi l e (iterCurrentUserRole . hasNext ()) {

String userRole = iterCurrentUserRole . next () ;
i f (roles . contains (userRole) && roles . contains (role)) {

roleFlag = true ;
}

}

i f (! roleFlag) {

List<UIComponent> uiList = getChildren () ;
Iterator<UIComponent> iter = uiList . iterator () ;
whi l e (iter . hasNext ()) {

UIComponent uiComponent = iter . next () ;
getUIComponent (uiComponent) ;
uiComponent . setRendered (f a l s e) ;

69

Chapter 5 Description of Our Approach

uiComponent . setInView (f a l s e) ; }
}

} e l s e {
throw new IOException (" User i s not s to r ed in cur rent s e s s i o n ") ;

}
}

}
p r i v a t e void getUIComponent (UIComponent mainUIComponent) ;

}

The EsapiAuthorization extends the UIOutput class of the original JSF frame-
work. The role property inside the class represents the attribute associated with the
authorization tag. FileBasedAuthenticator is the class of ESAPI and we have
integrated it here, in our framework, in order to handle user’s information.
The currentUser Information is stored by the JSF application and it returns the
current user object from the session. Once the user object is faced from the session
and the same user object is picked up from the user.txt file, where the user infor-
mation and associated information are stored. If the user requesting the JSF page
does not contain enough rights in the user.txt file, then the user will not be able
to see the important content on the page.
The boolean value of role Flag in the method shows whether the user can view the
content or not. If the boolean value is set to “false”, the UIComponent inside the
esapiAuthorization tag will not render for that user because he or she does not have
enough rights to visualize the content.
The getUIComponent(..) method is called from the while loop and it calls itself
recursively and sets all the children UIComponent visible false so they will not
render any more.
(2) Configure the tag library in the web.xml file (as shown in the section
5.3.2).
(3) Include the name space of the tag library in the JSF page (as shown
in the section 5.3.2).
(4) User authorization tag in the JSF page.
The .xhtml page shown in the below code, provides more detail about how the
authorization tag is integrated and are used in order to separate the various content
on the page. The <h:form> tag contain three different sections, the first one is
for the “admin” user only, the second one is for the user who has “user” roles and
the last one is general information that can be viewed by everybody.

Listing 5.11: result.xhtml
<html >

. .
<h:form>

<e s a p i : a u t h o r i z a t i o n r o l e=" admin ">
<h:pane lGr id columns=" 1 ">

70

5.3 Configuration of Security Framework in JSF Based Application.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Admin Panel ←↩
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

</ h:pane lGr id>
</ e s a p i : a u t h o r i z a t i o n>

<e s a p i : a u t h o r i z a t i o n r o l e=" user ">
<h:pane lGr id columns=" 1 ">
∗∗∗ User Panel ←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
</ h:pane lGr id>

</ e s a p i : a u t h o r i z a t i o n>
∗∗∗ General Panel ←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗
<h:pane lGr id columns=" 2 ">

UserName :
<h:outputText value="#{user . userName} " escape=" f a l s e "></ h:outputText>

</ h:pane lGr id>
</ h:form>
. .

</html>

The <esapi:authorization role=“admin”> shows that the role attribute is set
to the “admin” value and admin user can only see the “Admin Panel” as shown
in the code. For other users the child component inside the panel will not be visible.
The <esapi:authorization role=”user”> shows that the role attribute is set to
the “admin” value and the user with “user” role only can visualize the detail inside,
however, the same component detail is accessible to the admin user.
The UIComponent outside the <esapi:authorization role=“user”> component
tag is accessible to the all the users whether they have admin or user roles or not.
So the Authorization modules separates the presentation later differently for the
different user according to their roles.

5.3.7 Components of the Render Response Module

Figure-5.6 shows the different components of theRender Response module as well
their interaction with JSF Framework and ESAPI.

• ESAPIHtmlRenderKitImpl Class

The original HtmlRenderKitImpl class from the JSF framework renders
the JSF UI component instances for a html specific client. The class is ex-
tended by ESAPIHtmlRenderKitImpl class of the newly developed secu-
rity framework and it overrides the createResponseWriter() method which
is responsible for creating instances of custom ESAPIHtmlResponseWri-
terImpl class (described below). So now, the ESAPIHtmlRenderKitImpl
renders the JSF UIComponent on the html page as per the standards of the
newly developed security framework, instead of JSF framework. This shows
that the render response face of JSF based application is controlled by the
security framework. Thus before rendering any JSF UIComponents on the

71

Chapter 5 Description of Our Approach

Figure 5.9: Components of Render Response Module

Html page, they need to be verified completely for the security reason such as
it prevents the cross-site scripting (xss) attack and that is mainly done by the
below class.

• ESAPIHtmlResponseWriterImpl Class

The ESAPIHtmlResponseWriterImpl class extends the original Html-
ResponseWriterImpl class of the JSF framework and its object is created
inside ESAPIHtmlRenderKitImpl class. The class contains various meth-
ods that are responsible for rendering different JSF UIComponents, for ex-
ample if the <h:outputText/> component tag renders differently then
<h:commandButton/>. For that, different method of ESAPIHtml-
ResponseWriterImpl is called. The methods internally call the method of
the ESAPI library for encoding JSF UIComponent on the html page for
preventing cross-site scripting attack.

• Faces-config.xml

Finally, the newly created render kit (ESAPIHtmlRenderKitImpl) needs
to be resisted in the faces-config.xml file of the JSF based application, in order
to verify the output on the html page as per given in the OWASP ESAPI.

The configuration steps for the Render Response module are given below, that helps
to the developer with integrating it within the JSF based web application.

72

5.3 Configuration of Security Framework in JSF Based Application.

5.3.8 Configuration Steps of the Render Response Module.

The following step is required, in order to configure Render Response module in the
JSF application.

• Configure the tag <render-kit> in the faces-config.xml file.

The code snippet below shows the faces-config.xml file which contains the cus-
tomize <render-kit> entry. It configures the custom render kit of security frame-
work in the JSF based web application. The <render-kit> tag contains the two
child tags such as <render-kit-id>, that is responsible for providing the type
(HTM_BASIC) of render kit, and <render-kit-class> that specifies the fully
qualified customized render kit class.

Listing 5.12: faces-config.xml
<?xml v e r s i o n=" 1 .0 " ?>
<face s−c o n f i g >
<render−k i t>
<render−k i t−id>HTML_BASIC</ render−k i t−id>
<render−k i t−c l a s s>esapi . unifreiburg . renderkit . EsapiHtmlRenderKitImpl</ render−k i t−←↩

c l a s s>
</ render−k i t>
</ face s−c o n f i g>

By writing the html <render-kit> entry here, it overrides the actual render kit
of the JSF framework by EsapiHtmlRenderKitImpl and takes over the control
of the rendering JSF UIComponents. So now, the EsapiHtmlRenderKitImpl is
registered in the application.

The paragraph below gives the representation of the EsapiHtmlRenderKitImpl
class.

The @JSFRenderkit annotation tag above the class name configures the Esapi-
HtmlRenderKitImpl class as render-kit in the JSF application. The RenderKi-
tId attribute of the annotation tag sets the type of render kit, the same as specified
in the <render-kit-id> tag of the faces-config.xml file.

Listing 5.13: EsapiHtmlRenderKitImpl.java
@JSFRenderKit (renderKitId=``HTM\ _BASIC ' ')
Public c l a s s EsapiHtmlRenderKitImpl extends HtmlRenderKitImpl
{

@Override
p u b l i c ResponseWriter createResponseWriter (Writer writer , String ←↩

contentTypeListString , String characterEncoding)
{

String selectedContentType = HtmlRendererUtils . selectContentType (←↩
contentTypeListString) ;

i f (characterEncoding == n u l l)
{

characterEncoding = HtmlRendererUtils . DEFAULT_CHAR_ENCODING ;
}

73

Chapter 5 Description of Our Approach

// Create new EsapiHtmlResponseWriterImpl o b j e c t which i s i n t e g r a t e d with←↩
ESAPI API .

re turn new EsapiHtmlResponseWriterImpl (writer , selectedContentType , ←↩
characterEncoding , MyfacesConfig . getCurrentInstance (FacesContext .←↩
getCurrentInstance () . getExternalContext ()) .←↩
isWrapScriptContentWithXmlCommentTag ()) ;

}
}

The createResponseWriter(....) overrides the createResponseWriter(....)
method of the HtmlRenderKitImpl class that creates the object of the custom
EsapiHtmlResponseWriterImpl.

The paragraph below describes the implementation of the EsapiHtmlRespon-
seWriterImpl. The writeText(Object value, String componentProperty-
Name) method takes Object and componentPropertyName as input parameters.

• Object - value of the component such as
<h:outputText value=“#{......}”>.

• String - name of the component property.

Listing 5.14: EsapiHtmlResponseWriterImpl.java
p u b l i c c l a s s EsapiHtmlResponseWriterImpl extends HtmlResponseWriterImpl
{

p u b l i c void writeText (Object value , String componentPropertyName) throws ←↩
IOException

{
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
String strValue = value . toString () ;

i f (isScriptOrStyle ())
{

i f (UTF8 . equals (_characterEncoding))
{

_currentWriter . write (strValue) ;
}
e l s e
{

// _currentWriter . wr i t e (UnicodeEncoder . encode (s t rVa lue)) ;
String encodedValue = ESAPI . encoder () . encodeForHTML (←↩

strValue) ;
_currentWriter . write (encodedValue) ;

}
}
e l s e
{

String encodedValue = ESAPI . encoder () . encodeForHTML (strValue)←↩
;

_currentWriter . write (encodedValue) ;
}

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
}

}

The value.toString() first converts the object into the String as shown in the code
snippet. Then the string value is passed to encodeForHTML(strValue) method
of the ESAPI that takes string as argument and returns the encoded string value.

74

5.3 Configuration of Security Framework in JSF Based Application.

The encoded string value is later passed to the
_currentWriter.write(encodedValue) write method of the response writer that
will write the encoded value on the html page later.
So, in this way, the UnicodeEncode from the JSF framework that encodes the
string value, is replaced by the encoder from the ESAPI encoder. So the value of
the any component will be encoded before it renders value on the html page.
This solves the problem [Chapter-4.2.1 and 4.2.2] and encodes the component value
only once.
The next paragraph shows the .xhtml page that contains only one <h:outputText>
component tag and it renders the value (user.email) after passing it from the
htmlForEncoder() method of the Esapi as explained it before.

Listing 5.15: result.xhtml
<html >

.
<h:outputText value="#{user . emai l } " >

.
</html>

In this way, the value of all the components in the JSF page are validated against
the cross-site scripting(xss) attack by integrating the Render Response module of
the security framework.

75

6 Further Work

Our current approach covers only a few critical web application security flaws from
OWASP Top Ten in the developed security framework. But there is still a lot of
work to do in the future. This section describes how our approach can be extended
and improved by further work.
Currently, our defined JSF-ESAPI security framework provides four modules
that addresses a few of the security risks to improve the security of the JSF2.0 based
web application. We can extend our framework by addressing more web application
security risks from OWASP top ten such as insecure cryptographic storage, Secu-
rity miss-configuration, insufficient transport layer security, etc. So all the security
features make the JSF based web application more secure from all aspect, therefore
the remaining features of ESAPI can be used. As of now, the JSF-ESAPI frame-
work requires little configuration for different modules separately, however, in the
future, all the configuration information for different modules could be placed into
one single configuration file that will reduce burden on the developer. For example,
the developer downloads the configuration file and places it to the required location.
This is also a big point for further work.
The current security framework is built for Apache My Faces, but we can generalize
i for the entire Java based framework as well, such as Sun Java facelets, RichFaces.
Moreover, the framework could also be useful for all the versions of JSF applications
such as JSF1.*.
The Validation module transports few sets of the ESAPI Validator into the new
JSF friendly library so far. But there are still possibilities of covering more tags of
the ESAPI Validator inside the newly created library for better functionalities.
The Filtering module always adds newly generated random tokens in the form on
each http page response. The size of a random token is around 130 characters long
but we can increase the token size by using special algorithms. The algorithm also
needs to place special characters in the token that makes the attacker brainstorm to
produce the same token. The lifetime of the generated token is also another point
to be considered.
The Render Response module filters the cross-site scripting (XSS) vulnerable
content or script as given in the ESAPI configuration file but it could be manageable
to change as per the requirement of the developer.
The File Based Authorization separates the content over presentation layer based
on the user role specified for example; the user with “admin” role can access all the

76

Further Work

data of the presentation layer; however for other roles it might be restricted. When
the user with “non-admin” role requests for the .xhtml page, the framework does
not render the restricted data in the rendering response phase but it updates the
managed Bean in the back end. So there should be a mechanism that updates the
managed Bean data only relevant to the rendering response.
The framework is not yet tested in the live JSF based web application and it also
requires the extensive testing, in order to become more stable for the industry use.
Furthermore, we want to provide the security framework not only based on Java
technologies, e.g PHP, .Net based Web application.

77

7 Summary and Conclusions

The development of secure application is very important in the real life. For that the
developer focuses on security that belongs to the existing framework, but sometimes,
it is not enough or difficult to integrate it. So, the development of the security
framework is required.
This work introduced a new security framework based on JSF2.0. It uses the ESAPI
(Enterprise Security API) library and transfer some of the important features
into the newly developed security framework. The primary idea behind using ESAPI
is, it is an open source, easy to write lower risk software application or able to add
security application based on OWASP standard. The security framework consists of
four modules. Among the four modules, the first module is the Validation module
that contains new sets of JSF friendly tag library ported from ESAPI. This new
JSF library helps to percolate vulnerable script from the user input and provides
additional functionalities. Similarly, the Filtering module is the secode module.
It is responsible for adding new generated random token in the form on each http
request and sends the form back to the client. If the client makes new http request,
the Filtering module compares the random token attached with the form and the
token stored in the session for that user, if they do not match then it throws an
appropriate error message is thrown. The third module is File Based Authoriza-
tion, that is responsible for separating presentation layer to the different users based
on their roles. The Rendering Response is the last module and it is responsible
for filtering XSS vulnerable code from the output when escape is equal to “true” or
“false”. It provides the layered architecture, it means that it is up to the developer
to choose whichever module they want to use in the system. We have also explianed
the series of steps in order to use the security framework with the JSF2.0 framework.
As shown in Chapter 1, The integration of security in the software development life
cycle of web application, however, still requires a developer to possess a deep un-
derstanding of security vulnerabilities and attacks [BMW+11]. Therefore a security
framework is required that automatically provides new security features or improves
the existing security features of the web based development framework.
Chapter 2 discusses the requirements for security in the web application, HTTP (Hy-
perText Transmission Protocol), HTML (HyperText Markup Language), Javascript
and important security risks listed by OWASP Top Ten. This chapter also gives
information about possible threats in the web application graphically and several
measures to prevent them. The Art of Review section ends with the description of
possible vulnerabilities in the web application and lists of ways of preventing them.

78

Summary and Conclusions

Chapter 3 has introduced the technologies used in the project such as JSF2.0 (Java
Server Faces). First it discusses the history of web application development then
takes us through the principles of the MVC pattern. Afterwards, the JSF2.0 frame-
work is described and then the later part of the chapter covers the series of steps
needed to build up a simple JSF based web application.
Chapter 4 covers the architecture of the ESAPI (Enterprise security API). It also
gives several demos of insecure applications and how to secure them by using the
ESAPI library. This chapter shows the importance of the security library in the
application.
The main focus of the Chapter 5 lies in the configuration steps of the JSF-ESAPI
security framework in the JSF2.0 based web application. First, it covers the architec-
ture of the framework and then provides detailed information of all the components
of each module. At the end the configuration steps are described, with an example,
in order to integrate the framework.
Work that could be done in the future is described in chapter 6. This section
gives an overview of how our approach can be extended and improved by extending
and improving our security framework for JSF2.0 framework as well as other web
application frameworks.
To conclude this work we can say that this report has shown the usage of the security
framework in the JSF2.0, that the idea of providing automatic security features
in the Web applications is very important without requiring deep knowledge and
therefore a lot of work to be done in the future. We hope that our approach in this
thesis work can support improvements in security of Web development frameworks
like JSF, Struts, and Spring etc. with minimal configuration.

79

Bibliography

[API10a] JSF API. Facesvalidator, 2010.
[API10b] Oracle Java API. Configuring an event listener, 2010.
[Aug04] Robert Auger. Cgi security, 2004.
[BMW+11] J. Burket, P. Mutchler, M. Weaver, M. Zaveri, and D. Evans. Guardrails:

a data-centric web application security framework. In Proceedings of the
2nd USENIX conference on Web application development, pages 1–1.
USENIX Association, 2011.

[Bod] F. Bodmer. Cross-site scripting.
[Com04a] Owasp Community. A1-injection, 2004.
[Com04b] Owasp Community. Authentication and session management, 2004.
[Com04c] Owasp Community. Direct object reference, 2004.
[Com04d] Owasp Community. Failure to restrict url access, 2004.
[Com08a] Oracle Community. Assembling and configuring web applications, 2008.
[Com08b] Owasp Community. Establishing a security api for your enterprise, 2008.
[Com10] Owasp Community. Cross-site scripting prevention cheat sheet, 2010.
[Com11] Owasp Community. Esapi for user class, 2011.
[Com12a] Owasp Community. Open web security project, 2012.
[Com12b] Owasp Community. Owasp top ten project, 2012.
[Eis08] Markus Eisele. Enterprise software development with java, 2008.
[Enu04] C.W. Enumeration. Common weakness enumeration, 2004.
[Fla06] D. Flanagan. JavaScript: the definitive guide. O’Reilly Media, 2006.
[GS02] S. Garfinkel and G. Spafford. Web security, privacy and commerce.

O’Reilly Media, 2002.
[GSS03] S. Garfinkel, G. Spafford, and A. Schwartz. Practical unix and internet

security. O’Reilly Media, 2003.
[HS06] J. Holmes and C. Schalk. JavaServer Faces: the complete reference.

McGraw-Hill, Inc., 2006.
[Jav11] JavaBeat. About java server faces (jsf) framework, 2011.

80

Bibliography

[Jen06] E. Jendrock. The Java EE 5 tutorial: for Sun Java system application
server platform edition 9. Addison-Wesley Professional, 2006.

[MC03] Erik Olson Mark Curphey, Joel Scambray. Improving web application
security, 2003.

[Mel09] John Melton. The owasp top ten and esapi, 2009.
[NWS11] M. Niemietz, P. Work, and J. Schwenk. Javascript-based esapi: An

in-depth overview. Ruhr-University of Bochum, OWASP Foundation,
2011.

[Obe07] Ernst Oberortner. Master thesis: Generating web application with ab-
stract pageflow models, 2007.

[Pla04] Chritian Platzer. Master thesis: Trust-based security in web services,
2004.

[RGR97] A.D. Rubin, D. Geer, and M.J. Ranum. Web security sourcebook. Wiley
Computer Pub., 1997.

[RK07] Matthew Scholl Hart Rossman Jim Fahlsing Richard Kissel,
Kevin Stine. Security considerations in the system development life
cycle, 2007.

[SP] B. Sujatha and R. Pasunuri. Prevention of session data dependent vul-
nerabilities using guid (globally unique identifier) and integrity stamp.

[Spe05] K. Spett. Cross-site scripting. Are your Web Applications Vulnerable,
SPI Labs whitepaper, 2005.

[SR11] A.K. Sood and K. Raja. Dissecting java server faces for penetration
testing. 2011.

[Vog06] Philipp Vogt. Master thesis: Cross site scripting (xss) attack prevention
with dynamic data tainting on the client side, 2006.

[WLG11] Yi Wang, Zhoujun Li, and Tao Guo. Program slicing stored xss bugs
in web application. In Theoretical Aspects of Software Engineering
(TASE), 2011 Fifth International Symposium on, pages 191 –194, aug.
2011.

81

	Contents
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Organization of This Thesis

	2 State of the Art Review
	2.1 The Notion of the Web Security
	2.1.1 Web Application Definition

	2.2 HTML
	2.3 HTTP
	2.4 Javascript
	2.5 What is OWASP?
	2.5.1 What is OWASP Top Ten ?
	2.5.2 XSS
	2.5.3 Preventing XSS in the Development Phase
	2.5.4 CSRF
	2.5.5 CSRF Detection and Prevention
	2.5.6 Insecure Direct Object References
	2.5.7 Insecure Direct Object References Prevention
	2.5.8 Broken Authentication and Session Management
	2.5.9 Failure to Restrict URL Access
	2.5.10 Failure to Restrict URL Access Protection
	2.5.11 Injection
	2.5.12 Injection Prevention

	3 Java Server Faces
	3.1 History
	3.2 Model-View-Controller Pattern
	3.3 About Java Server Faces
	3.4 Java Server Faces Architecture
	3.5 JSF Web Application
	3.6 JSF Request Processing Lifecycle
	3.7 Guidance For Developing JSF Web Application
	3.7.1 Mapping the FacesServlet Instance To the Web.xml File
	3.7.2 Creation of .xhtml Web Pages
	3.7.3 Defining the Page Flow
	3.7.4 Development of the Java Beans
	3.7.5 Adding Managed Bean Declarations

	3.8 The Advantages of the JSF Application

	4 ESAPI
	4.1 Architecture
	4.2 How does ESAPI Work?
	4.2.1 ESAPI in Presentation Layer of JSF Based Web Application
	4.2.2 ESAPI in Business Layer of JSF Based Web Application

	4.3 Invalidate User Input
	4.4 Performance versus Security
	4.5 Improvement

	5 Description of Our Approach
	5.1 Why Security Framework?
	5.2 Architecture of the Security Framework
	5.2.1 Validation Module
	5.2.2 Filtering Module
	5.2.3 File Based Authorization
	5.2.4 Render Response

	5.3 Configuration of Security Framework in JSF Based Application.
	5.3.1 Components of Validation Module
	5.3.2 Configuration Steps of the Validation Module.
	5.3.3 Components of Filtering Module
	5.3.4 Configuration Steps of the Filtering Module.
	5.3.5 Components of Authorization Module
	5.3.6 Configuration Steps of the Authorization Module.
	5.3.7 Components of the Render Response Module
	5.3.8 Configuration Steps of the Render Response Module.

	6 Further Work
	7 Summary and Conclusions
	Bibliography

